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The cell reproduces by making an exact copy of itself
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The cell reproduces by undergoing several processes: cell cycle
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DNA replication: Quantitative
description of protein expression
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Outline

Deterministic model
of gene expression

Stochastic model of gene expression
captures cellular heterogeneity

Applications: Deterministic modeling of proteins
controlling anaphase



A simple model for transcriptional
regulation of protein expression
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Assumptions underlying ordinary
differential equation models

Population techniques
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What determines the protein dynamics in
response to changes in transcription?
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Time course of mRNA and protein in
response to gene activation
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Protein dynamics has a "Response time"



What determines protein expression
level at steady state?
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Steady state level set by ratio of synthesis and degradation rates

Transcription induces proportional changes in mRNA and protein levels



Protein dynamics solely determined by
MRNA and protein degradation rates
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Applications: Deterministic modeling of proteins
controlling anaphase



DNA replication: Quantitative
description of protein expression
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Gene expression — a stochastic process
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Stochastic dynamics shown for transcription initiation and elongation

Randomness arises from low molecule numbers!
e each cell contains few copies of each gene
e transcription factors often present in low amounts



Fluomecants

Intrinsic and extrinsic sources of gene
expression variability
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Stochastic models account for event
probabilities at low molecule numbers

Deterministic ODE model VS. Stochastic model
Average behavior of Probabilistic behavior (randomness)
large molecule numbers at the single-molecule level
Continuous: Concentration Discrete: Absolute

of mRNAs/proteins molecule counts



Stochastic version of simple protein
expression model

I
1. RNA production: RNA — RNA + 1
v -RNA
2. RNA decay: RNA ——— RNA = |
k-RNA
3. Protein production: protein ——— protein + 1
¥a Jprofein

4. Protein decay: protein ————— protein — |

Reactions occur with certain probabilities

mRNA and protein given as absolute molecule count (discrete)
Simulation by Gillespie algorithm

* selects most probable next reaction
e updates molecule counts



Simulated temporal evolution of mMRNA
and protein in a stochastic model
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Anaphase is characterized by chromosome segregation
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Anaphase events are temporally ordered

Anaphase:
the stage of the cell cycle characterized by chromosome segregation.

I

Sister chromatid separation Mitotic exit:
(SCS) a series of events marking the end of
kinetochore mitosis.
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Two independent pathways control anaphase events
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Deterministic modeling of protein-protein interaction
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Simulation of protein degradation kinetics (rate equations)
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Kinetic model can be used to predict temporal order

Degradation kinetics
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What do we learn from the calibrated model?

» Experimental Conditions for reversal of temporal order
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Double perturbation: a method for terminating cancerous cells in humans
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