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1. Why protein interactions are important?
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Faeas pdb id: 6xcq

They help us to:

Study biological processes and
molecular functions

Understand disease mechanisms
Develop new therapies

Evolutionary and functional
annotations




2. Classification of protein interactions

Heat Shock Protein 27
(Homo-oligomer)

a chain

a. Composition

Homo-oligomers:

P0O4792

* If interacting partners are
identical

Hetero-oligomers:

a chain

* If interacting partners are non-
identical

Hemoglobin
(Hetero-oligomer)

P04792




2. Classification of protein interactions

P00704

b. Affinit Histone octamer
(Obligate)
Obligate:

* Constituents of a complex are unstable
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* The components of non-obligate 4
interactions can exist independently
e Ofter are regulated by environmental

.. P02281
or cellular conditions P06897

RNAse-Antibody
(Non- obligate)




2. Classification of protein interactions

c. Lifetime ATP Synthase Complex
1UBQ (permanent)
Transient: (transient)

* The components of transient
interaction associate and
dissociate temporarily in vivo

POCG48

Permanent:

* Permanent interactions are
usually very stable and
irreversible




in-Protein Interaction Networks

3. Studying Prote

(PPINSs)

s avery
complex system
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3. How do we study protein interactions
on a large scale computationally?

Graph theory!

“[...] the study of graphs, mathematical structures used to model pairwise relations between objects. A graph in this

context is made up of vertices, nodes, or points which are connected by edges, arcs, or lines”.
Wikipedia

Graph

Edge
V ={vlv2,v3,v4,..}

E={(vi,v2),(v2,v3),(v2,v4),...}




3. Graph Theory: types of graphs

S S

e protein protein * metabolic networks
interaction networks * regulatory networks

6.0

* gene co-expression networks




weighted

directed

undirected

3. Graph Theory: adjacency matrices
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3. Graph Theory: network topological properties

O Degree Centrality

* node property

\ * number of edges of a vertex (node)

Average degree

* network property
* mean over all degrees in the network

Hub node

Degree distribution

* network property
* informs about the topology of the network
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3. Graph Theory

Scale-free network

Random network
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scale free networks!
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3. Graph Theory: shortest path

Paths lengths:

6 steps
5 steps

Path
* between two vertices is formed by the edges
that lead from one vertex to another

Shortest path

* shortest path between the two vertices
* used to model how information flows

The shortest path between two proteins in a
PPI network often represent the most
efficient routes for signaling




3. Graph Theory: betweenness and closeness centrality

Many shortest paths pass through a node — High betweenness centrality — Flow of information in the graph

The length of shortest paths passing

. — High closeness centralit — Measure of centrality in the graph
through the node is low & Y y grap

High Closeness Centrality
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High Betweenness Centrality

High Degree Centrality




Networks in Biology
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Hyperbolic network model
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Euclidean Hyperbolic model in 2D Hyperbolic model in 3D




4. How to link ontologies and PPIs

The Molecular Interactions (M) ontology forms a structured controlled vocabulary for the
annotation of experiments concerned with protein-protein interactions.

ssss PSI-MI TAB Format (MITAB):

ssaas translating
sess the code of life 1
as

HUMAN PROTEOME ORGANIZATION

Perspective ‘ Published: 30 January 2004
N .
The HUPO PSI's Molecular Interaction format—a 3
o . o
community standard for the representation of protein .
. .
interaction data
Henning Hermjakob B, Luisa Montecchi-Palazzi, Gary Bader, Jéréme Wojcik, Lukasz Salwinski, Arnaud
Ceol, Susan Moore, Sandra Orchard, Ugis Sarkans, Christian von Mering, Bernd Roechert, Sylvain Poux, Eva 4'
Jung, Henning Mersch, Paul Kersey, Michael Lappe, Yixue Li, Rong Zeng, Debashis Rana, Macha Nikolski,
Holger Husi, Christine Brun, K Shanker, Seth G N Grant, ... Rolf Apweiler ~ + Show authors
Nature Biotechnology 22, 177-183 (2004) ‘ Cite this article 5 .

2776 Accesses ‘449 Citations ‘ 9 Altmetric ‘ Metrics

Interactor A & B: Unique identifiers (e.g., UniProt
IDs)

Interaction Type: Nature of the interaction (e.g.,
physical association, enxymatic activity)

Detection Method: Experimental approach used
(e.g., yeast two-hybrid, co-IP)

Confidence Score: Quantifies the reliability of
the interaction

Source Database: Where the data originated
(e.g., IntAct, DIP)




4. How to link ontologies and PPIs

PSICQUIC View

Input Form = Browse = Help

Input Form > Search Results

4,972 binary interactions found for search term atxn1

Q@ AP clomes?) Q@ BARG Q@ @bhf-ucke-0
Q@ BindingDB® Q @ ®@BioGridg-327 Q @ EChEMBLE-0
Q@ DPIMExg Q@ DrugBankg Q © EEBLGOAMRNAS-0
Q@ GeneMANIA® Q @ @HPIDbe-0 Q@ 120z
. Q@ i 7} Q@ lnn: I Q0 BintActe-2,212
W h I C h Q@ iRefindex# Q@ MatrixDBg Q @ @MBInfog-0
. Q @ @MINT5-22 Q @ @MPIDBgZ-0 Q @ ®Reactomez-0
prote| ns 0@ spikeg a® a® TopFinde
Q o @ VirHostNet-0 Q (=] ZINCg
IntAct

32296183
IM-25472

W h i C h / P54253 ATXN1  Homo sapiens (9606) Homo sapiens (9606) Luck et al. (2017)
] ]

physical association two hybrid array

*: Feedback

Publication
info

Q@ BINDZ Status of the service
DIP,
L Jmial ) @ ONLINE
© BEBL-GOA nonintAct-24
N nomndte @ OFFLINE

Q @ BIMExg-2,307
Q@ Interoporcz
Q@ menthag

Q@ MReactome-Flsg-11

@ WARNING: Time out

Experimental
info

3426 bait

intact-miscore:0.90

author score:0.894353683426 bait prey
intact-miscore:0.90

— Confidence

P54253 P54253 ATXN1 ATXNT Homo sapiens (3606) Homo sapiens (9606) Davidson et al. (2000) 11001934 physical association two hybrid intact miscore:0.90 prey bait S C O re
H 5] L] !
S p eciles P54253 P54253 ATXN1 ATXN1 Homo sapiens (9606) Homo sapiens (9606)Lim etal (2006) 16713569 physi iation two hybrid author score:core-2 prey bait
M IM-11827 intact miscore:0.90

ntMINT-5218676

P54253 P54253 ATXN1 ATXN1 Homo sapiens (9606) Homo sapiens (9606) Lim etal. (2006) 16713569

‘mint MINT-5218676
P54253

ATXN1 ATXN1  Homo sapiens (9606) Homo sapiens (9606) Rolland et al. (2014)

25416956

physical association two hybrid

18 physi

author score:core-2 prey bait
intact-miscore:0.90

two hybri intact-miscore:0.90 bait prey




5. Databases for protein interactions

Primary Databases
(experimental interaction data)

-

H#eMINT

Secondary Databases
(consensus-based)

~

"

Agile Protein Interactomes DataServer

HIPPIE » Human Integrated Protein-Protein Interaction rEference

~

/

Predictive Databases

(experimental data with computational predictions)

-~

5> STRING

Human~ Protein-Protein Interaction Prediction

UniHI -- the Unified Human Interactome dat

~

abase




6. Computational predictors of PPIs

/\ T — N
N\ / wHerez /| /~ How? "\ / HOWMUCH? \|

how? how much?
Wheee! PIPR sequence-based ML
GROMACS MD simulations q
HADDOCK2 simulated annealing docking
AMBER MD simulations ISLAND sequence-based ML
if? HDOCK homology + FFT docking
IT CHARMM MD simulations mmCSM-PPI structure-based ML
ClusPro FFT docking

PPIl-Detect  sequence-based ML PYEMMA 2 MSM construction AffPred knowledge-based energy function

MEGADOCK FFT docking

2 & . . . PerSpect-EL structure-based ML
DEEDFE PPI seqguence based ML SWISS-MODEL homology modeling OPenMM MD s"'nulatlons » p

AlphaFold2 cenpeauslEseNL GENESIS  MD simulations PPI-Affinity  structure-based ML

Grassmann et al. (2024), Chemical Reviews




/. PPINs and diseases

* |Investigate disease
pathogenesis

A O Protein @ Predicted disease protein

Disease @ Disease protein e Id ifi i f
—— 1 1 i i i e tI Icatlon O
Biokain: bratiii nisiass Predicted protein-disease association n

' ~ Protein-disease association - critical nodes
athway component Disease )
—— * Drug discovery
N\ © » \ * Protein networks
Ly
i NN

can model how a
mutation affects
cellular signaling
over time, offering
predictions about
disease onset and
progression.

Disease protein
discovery




/. PPINs and diseases

A survey of SCA1

Spinocerebellar Ataxia Type 1 A AodhddE | ] | cheddbcledolodeadubeleiadbolen
—> Neurodegenerative disease | (R — l _——
Translation of normal protein ransiacom e rotel

Ataxin-1 (RNA binding protein) ﬁ

i \
A\ e = %

Normal protein folding

Cell toxicity /

Addition of PolyQ track in N-terminal neurodegeneration
region causes protein aggregation!




/. PPls and diseases

A survey of SCA1

U2AF5 binds to pS776 and
regulates alternative splicing

U2AF65 interaction

| RBM17 binds to pS776 and |
enhances pathogenesis

: : PPA2 modulates ‘
e aotion | | ataxin-1 interactions !
i i with splicing factors !

PPA2-mediated dephosphorylation

S776 phosphorylation |
increases toxicity

AKT-mediated phosphorylation

\l

SCA1 degeneration

14-3-3 binding

LANP deletion ameliorates
i SCA1 pathology

LANP interaction

CIC binding increasesé
i SCAT1 toxicity |

Gif-1 interaction i o
e : Nuclear localization

i Gif-1 is necessary for -
. survival of Purkinje cells

RORa interaction

Partial loss of RORa enhances

) pathoge ity | RNF4 interaction

RNF4 ubiquitinates SUMOylated i
| ataxin-1 and enhances its degradation

| Absence of NLS diminishes
| SCA1 phenotypes

SUMOylation

SUMOylation enhances ataxin-1 degradation and reduces toxicity

Graphic representation of the SCA1 protein, its domains, interactions, and modifications.

> JCl Insight. 2021 Feb 8;6(3):2144955. doi: 10.1172/jci.insight.144955.

Modulation of ATXN1 S776 phosphorylation reveals
the importance of allele-specific targeting in SCA1

Larissa Nitschke ' 2 3, Stephanie L Coffin 2 3 4, Eder Xhako 2 3 4, Dany B El-Najjar 2 3,
James P Orengo > 2, Elizabeth Alcala 2 3, Yanwan Dai 3 9, Ying-Wooi Wan 2 3, Zhandong Liu 3 8,
Harry TOrr 7, Huda Y Zoghbi 1 2 3 4 5 6 8

Affiliations + expand
PMID: 33554954 PMCID: PMC7934855 DOI: 10.1172/jci.insight.144955

Disruption of S776 phosphorylation on the
polyQ-expanded ATXN1 results in an
improvement of SCA1 pathogenesis!




/. PPls and diseases

Computational analysis
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/. PPls and diseases

Proteomics analysis

Critical
(CPs)
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PPI network of significantly dysregulated proteins in SCA1 cells




Takeaways for therapeutic usage of PPINs

PPl networks reveal disease mechanisms: From hijacked host pathways in infections to disrupted
molecular interactions in neurodegeneration.

They guide drug discovery: Many successful therapies were developed by targeting interactions
within these networks.

They facilitate multi-omics integration: Combining genetics, transcriptomics, and proteomics
with PPl networks provides a comprehensive disease understanding.
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hank youl!
Any questions?

R EEEEE——————————




HIPPIE » Human Integrated Protein-Protein Interaction rEference

[]
8 | I I I l e tO p | a y PROTEIN QUERY NETWORK QUERY BROWSE SCREEN ANNOTATION DOWNLOAD INFORMATION
[ ] e 00

1) Google “hippie database” and go to
https://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
2) Click on “NETWORK QUERY” and type on the box: ATXN1
3) Scroll down on the website and set the output type as: show in browser-text, set the HIPPIE confidence score = 0,7
and select on the tissue filter the “brain-cerebellum”
4) Click on search

QUESTIONS

1) How many interactor ATAXIN 1 has?
2) Is ATAXIN 1 interacting with CIC protein?
3) If yes, how many publications validate this interaction?



https://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
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