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What statistics is (not) all about

Introduction to (bio)statistics



• Descriptive statistics
• Describe, summarize, order or graphically represent empirical 

data

• Exploratory data analysis
• Identify patterns or structures in the data

• Inferential statistics
• Predict, estimate and generalize about populations based on 

data derived from samples

Branches of  statistics

Introduction to statistics



Descriptive statistics



• Descriptive statistics provide the basis of quantitative data 
analysis

• The focus is to describe, summarize and graphically represent the 
data as it is without making any assumptions or generalizations

• Descriptive statistics provide measures to:
• Describe the central tendency of data

• Mean, median, modus
• Describe the dispersion of the data

• Variance, standard deviation, range
• Describe how different data are related to each other

• Correlation coefficient

Introduction to descriptive statistics

Descriptive statistics



Measurement scales

Descriptive statistics

Type of data
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• Nominal scale
• The lowest level of measurement
• Data belong to mutually exclusive categories
• The only possible comparison between elements is “equal to” 

or “not equal to”
• Examples include:

• Blood type
• Color of your eyes
• Nucleotides in the DNA sequence
• University field of studies

Measurement scales

Descriptive statistics



• Ordinal scale
• Data belong to mutually exclusive categories which can be 

ordered (<,> comparisons allowed)
• Differences between categories are not allowed
• Examples include:

• Exam grades (A, B, C, D)
• Questionnaire options (“strongly agree”, “agree”, 

disagree”, strongly disagree”)
• Levels of happiness, satisfaction, etc.
• Some clinical scores

Measurement scales

Descriptive statistics



• Interval scale
• A metric scale which allows building differences between 

values but not ratios
• Examples include:

• Celsius temperature
• IQ score
• Time on a clock

• No “true” zero value is defined on an interval scale
• 0 degrees Celsius does not mean there is no 

temperature
• 0:00 does not mean time does not exist

Measurement scales

Descriptive statistics



• Ratio scale
• A metric scale which allows building differences and ratios 

between values
• A value of zero indicates non-existence
• Examples include:

• Age
• Height
• Weight
• Number of children
• Distance
• Blood pressure

• Note: higher levels of measurements can be reduced to lower 
scales but not the other way around

Measurement scales

Descriptive statistics



• Central tendency, center or location of the data is a central or 
typical value

• Mode
• The element if the data which appears most often
• The mode can be determined for variables measured on any 

scale
Out of 40 participants in a statistics course, 10 are studying 
bioinformatics, 25 are studying biomedicine and 5 are studying 
biochemistry. What is the mode for the the variable field of 
studies of the course takers?

Measures of  central tendency

Descriptive statistics



• Median
• The “middle” value in an ordered data set, half of the data are 

smaller and half of the data are larger than the median
• Can be calculated for data measured at least on an ordinal 

scale

• Arithmetic mean
• The arithmetic mean only makes sense for variables on a 

metric scale
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Measures of  central tendency

Descriptive statistics



• Mean or median?
• Consider a small sample containing the following values

3.5; 4; 2.5; 6; 7; 5.5

�̅� =
3.5 + 4 + 2.5 + 6 + 7 + 5.5

6 = 4.75

𝑀𝑒𝑑𝑖𝑎𝑛 = 4.75

• Consider adding the value 500 to the set
3.5; 4; 2.5; 6; 7; 5.5; 500

�̅� =
3.5 + 4 + 2.5 + 6 + 7 + 5.5 + 500

7 = 75.5

𝑀𝑒𝑑𝑖𝑎𝑛 = 5.5 − 	𝑎	𝑟𝑜𝑏𝑢𝑠𝑡	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

Measures of  central tendency

Descriptive statistics



• Empirical variance 
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• Sample variance
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• Standard deviation 
𝑠 = 𝑠%

Measures of  dispersion

Descriptive statistics



• Suppose that blood pressure was measured in two samples of 30 
patients each. Mean diastolic blood pressure for the first sample 
turned  out to be 80, whereas mean pressure in the second 
sample was 100 mmHg.

• Do people in the second sample have higher diastolic blood 
pressure?

Graphical representation of  location and dispersion

Descriptive statistics
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• Suppose that blood pressure was measured in two samples of 30 
patients each. Mean diastolic blood pressure for the first sample 
turned  out to be 80 ± 30, whereas mean pressure in the second 
sample was 100 ± 40 mmHg.

Graphical representation of  location and dispersion

Descriptive statistics
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• Consider the first sample of 30 patients with mean diastolic blood 
pressure of 80, with a standard deviation of 30

Boxplot

Descriptive statistics
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Which is the “best” graphical representation?

Descriptive statistics
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• Consider the first sample of 30 patients with mean diastolic blood 
pressure of 80, with a standard deviation of 30

Histograms

Descriptive statistics



• In a study of 50 patients, systolic blood pressure and LDL cholesterol were 
measured. Mean blood pressure was 137.5 mmHg with a standard deviation 
of 18.27. Average LDL cholesterol was 134 mg/dL with a standard deviation 
of 14.14. 
• Is higher blood pressure associated with higher LDL cholesterol levels?

Association between metric variables

Descriptive statistics



• Pearson correlation coefficient
• Measures the linear relationship between metric variables
• Values range from -1 to 1

• -1 - perfect negative correlation
• 0 – no correlation
• +1 – perfect positive correlation 

Association between metric variables

Descriptive statistics



• In a study of 50 patients, systolic blood pressure and LDL cholesterol were 
measured. Mean blood pressure was 137.5 mmHg with a standard deviation 
of 18.27. Average LDL cholesterol was 134 mg/dL with a standard deviation 
of 14.14. 
• Is higher blood pressure associated with higher LDL cholesterol levels?

Association between metric variables

Descriptive statistics

Pearson r = 0.71



• Pearson correlation coefficient is only appropriate if the 
relationship between the variables is linear

Pearson correlation

Descriptive statistics

r = 0

r = 0

r = 0.45



• The Spearman correlation coefficient is an alternative to the 
Pearson correlation coefficient appropriate when:
• The relationship between the variables is monotonically 

increasing or decreasing but not linear
• Data are measured on an ordinal scale

• Values range from -1 to 1, 0 corresponds to no correlation
• Data are arranged in an increasing order and every data point is 

assigned a rank
• Spearman correlation belongs to the category of robust statistics 

because it is robust in the presence of outliers

Spearman correlation

Descriptive statistics



• Influence of outliers

Pearson vs. Spearman correlation

Descriptive statistics
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• Causality is often the focus of research 
Ø We try to explain why phenomena occur and what causes 

them
• Caution: statistics only provides measures of association. The 

question of what is cause and what is consequence remains 
open.

• Causality, therefore, requires careful theoretical consideration and 
appropriate experimental designs
• Causality can often be masked by random confounding factors 

or latent factors 

Correlation versus causality

Descriptive statistics



• Consider two variables A and B which are highly correlated with 
each other.

• Different causal relationships are possible

Correlation versus causality

Descriptive statistics
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Probability theory



• Random process – a phenomenon with an uncertain outcome. 
Examples include:
• A coin toss or throwing a dice
• The sex of an unborn child
• Result from an exam
• A scientific experiment

• The set of all possible outcomes of a random process is called a 
sample space Ω.
• E.g., the colour of a gummy bear we take out of a bag with 

blue, red, yellow and green gummy bears is a random process 
with the following sample space:

Ω = {„blue“, „red“, „yellow“, „green“}

Random processes

Probability theory



• The outcome of a random experiment is called a random event
• Simple event – an event which contains only a single 

outcome
E.g. A green gummy bear

• An event is a unification of simple events
E.g. A green gummy bear or a yellow gummy bear;
Not a blue gummy bear

• Although the single outcome of a random process is uncertain, 
outcomes follow certain distributions if the random experiment is 
repeated many times

• The chance of a random outcome occurring is described by the 
probability

Radom events

Probability theory



• Consider the following random experiment:
• A pot contains 50 white and 50 black balls. What is the 

probability of drawing a white ball if we draw with replacement 
(we put the ball back in the pot after drawing it)

• An R simulation was performed investigating relative 
frequency of white balls after repeating the experiment 10 000 
times by drawing 1 to 10 000 balls.

Frequency versus probability

Probability theory



• The relative frequency approaches 0.5 as the number of trials 
increases

Frequency versus probability

Probability theory

Number of 
draws

Number of 
white balls

Relative 
frequency of 
white balls

1 1 1

11 2 0.182
101 61 0.604

501 238 0.475

1001 494 0.494

9991 4985 0.499



• The relative frequency converges against a limit value as the 
number of trials n increases. The limit is called probability

Frequency versus probability

Probability theory



Random variables and probability distributions



• A random variable is a numerical representation of a random 
phenomenon. The values of the random variable correspond to 
the outcomes of the random process

• The values of the random variable are called realizations
• For example, flipping a coin is a random variable X with values 

0 (in case of heads) and 1 (in case of tails) 
• The color of a ball we draw from a pot with blue, red and green 

balls is a random variable Y with values 0,1 and 2, respectively
• The outcome of throwing a dice is a random variable Z with 

values {1,2,3,4,5,6}
• Notation:

• Random variables – X,Y,Z
• Realizations – xi, yi, zi

Definition of  a random variable

Random variables 



• Random variables with a finite, countable set of possible values 
are called discrete random variables
• The number of heads after flipping a coin n times
• The number of children in a family
• The field of studies from a randomly selected student on the 

campus at a given time point

Discrete random variables

Random variables



• A random variable which can take an infinite number of values in 
an interval [a; b] is called a continuous random variable
• Height and weight of a sample of citizens
• Blood pressure of patients in a study to test anti-hypertension 

therapy
• The time needed to solve an exercise during an exam
• The daily revenue of a supermarket

• Random variables in statistics follow certain distributions called 
probability distributions

Continuous random variables

Probability theory



• Many empirical distributions can be approximated by a normal 
distribution (e.g. height of adults, duration of pregnancy)

• Represents the limit distribution of many other probability 
distributions (e.g. binomial, poisson, t-distribution)

• Sampling distributions asymptotically approximate the normal 
distribution for large sample sizes

• The normal distribtution provides the theoretical basis for 
numerous models in statistics

Motivation for the normal distribution

Normal distrubution



• Completely defined by its two paramers expected value µ and 
variance σ2: 

X ~ Ɲ (µ; σ2)
• Density function is unimodal with characteristic „bell“ shape
• Density is maximal at X = µ and symmetrical around µ with 

inflection points +σ and –σ

• 𝑓 𝑥 = #
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Features of  the normal distribution

Normal distribution  

Inflection points



n = 5

From frequency to density

Normal distribution  

n = 10 n = 50

n = 100 n = 1000 n = 1x106



Normal distributions for different parameters

Normal distribution



• Expected value E(Z) = µ = 0
• Variance Var(X) =  σ2 = 1
• Every normal distribution can be transformed in the standard 

normal distribution using the following transformation

𝑍 = ,	(+
&

 ~ Ɲ(0,1)

Standard normal distribution

Normal distribution

Normal distribution Standard normal distribution



• Quantiles of the standard normal distribution with the 
corresponding cumulative distribution function values are 
summarized in statistical tables

• Since there are infinitely many normal distributions, they are 
usually transformed into a standard normal distribution 

Quantiles of  the standard normal distribution

Normal distribution 



Inferential statistics and hypothesis testing



• Statistical population – a set of similar elements of interest in a 
reasearch question or experiment
• E.g. All patients undergoing cardiac surgery over the age of 65
• Usually it is not possible to investigate a whole population due 

to time or cost reasons

• Statistical sample – a subset of a statistical population chosen 
by following a specific stragegy or criterion
• E.g. All patients undergoing heart valve surgery at the 

University Medicine Mainz in the period between January 
2023 and December 2023

Population vs. sample

Inferential statistics



Population vs. sample

Inferential statistics

Population

SampleDrawing n 
elements

Calculating 
sample statistics

Making 
inferences about 

population 
parameters



• Population parameters are unknown because the entire 
population is not available

• The measures which characterize samples are called statistics – 
directly calculated from the data

• Sample statistics are used to infer population parameters

Population parameters and sample statistics

Inferential statistics 

Population parameter Sample statistic

Expected value µ Sample mean C𝒙 

Variance σ2 Sample variance s2

Standard deviation σ Sample standard 
deviation s

Correlation ρ Correlation coefficient r



• Sample statistics are random variables because they are based 
on random samples

• Therefore, sample statistics have their own probability 
distributions called sampling distributions
• E.g. Let the height of German citizens in cm be a normally 

distributed random variable X with mean µ and variance σ2. 
Let C𝑿 be the mean height in a sample of size n. 

• C𝑿 is a random variable with the following distribution:

C𝑋	~	𝒩 𝜇;
𝜎%

𝑛

Sampling distributions

Inferential statistics



• Researchers are often interested in yes/no questions regarding 
population parameters 

• E.g. A new medicine to prevent cold was tested against a control 
treatment. In a small pilot experiment, 20 subjects were 
randomized to the control and 20 to the new treatment. 11 
subjects in the control group got a cold compared to 7 subjects in 
the treatment group. Does the new treatment  reduce the chance 
of getting a cold?

Hypothesis tests

Inferential statistics

Control Treatment
Got a cold 11 7

Remained healthy 9 13



• Results based on sample statistics initially only apply to the 
investigated sample

• Hypothesis tests are needed to decide if the observed results are 
due to population differences or simply the result of chance.

• The basis of hypothesis test is establishing the hypothesis pair:
§ Null hypothesis: Represents the status quo, absence of a 

difference – usually the hypothesis we want to disprove
H0: The new therapy does not reduce the risk of getting a 
cold.

§ Alternative hypothesis: Represents the alternative to H0 – 
usually represents the desired outcome

H1: The new therapy  reduced the risk of getting a cold.

Hypothesis tests

Inferential statistics



• The null and alternative hypothesis make assumptions about an 
unknown population parameter Θ (e.g. population mean µ or 
population proportion p)

• Types of hypothesis pairs:
• H0: Θ = Θ0 vs. H1: Θ ≠ Θ0: two-tailed test

• E.g. Expression levels of gene X under condition A are 
different compared to condition B

• H0: Θ = Θ0 vs. H1: Θ < Θ0: left-tailed test
• E.g. Therapy A reduces blood pressure compared to 

therapy B
• H0: Θ = Θ0 vs. H1: Θ > Θ0: right-tailed test

• E.g. Therapy A increases survival time in cancer patients 
compared to control.

Hypothesis tests

Inferential statistics



• At the end of a specific test we always retain one of the 
hypotheses and reject the other. However, we never know if this 
decision is correct.

• What we do instead is try to reduce the probability of a false 
decision 

• The following possibilities exist:

Hypothesis tests

Inferential statistics

Decision for a test

Reality Reject H0 Reject H1

H0 is true Type I error (α) Correct decision

H1 is true Correct decision Type II error (β)



• Researchers typically control the type I error probability, each 
statistical test is performed at a predefined significance level α. 

• Typical values include α = 0.05, α = 0.01, α = 0.001
• In order to decide which hypothesis to retain, a test statistic T is 

calculated. 
• T is a function of the sample statistic, e.g. the sample mean K𝑋

• Remember that hypothesis are defined for the unknown 
population parameters

• T is therefore a random variable with a probability distribution
• In order to decide which hypothesis to retain/reject, the 

distribution of T under the null hypothesis is evaluated. 
• The null hypothesis is rejected if T exceeds critical values which 

depend on α.

Hypothesis tests

Inferential statistics



Distribution of the test statistic T, two-tailed test
• Reject H0 if T < c1 or if T > c2

• c1 and c2 are the so called critical values

Hypothesis tests

Inferential statistics

H0H1
H1

α/2α/2



Distribution of the test statistic T, left- and right- tailed tests

Hypothesis tests

Inferential statistics

α

H0H1 H0 H1

α

Left-tailed test Right-tailed test

Reject H0 if T < c1 Reject H0 if T > c1



1. Evaluation of test assumptions
2. Definition of the null and alternative hypothesis
3. Definition of significance level
4. Calculation of the test statistic
5. Definition of the rejection region based on the probability 

distribution of the test statistic, critical values specification
6. Comparison of the test statistic with critical values
7. Decision to retain/reject null hypothesis and interpretation

Steps in hypothesis testing

Hypothesis tests



• The one sample z-test investigates if a population mean µ 
significantly deviates from a given value µ0 when the population 
variance is known.

E.g. The average note in the final biostatistics exam of biomedicine 
students at the University Mainz from the last 5 years was 2.2 with a 
known variance of 0.9. The average note of the 49 students who 
took the exam this year was 1.8. Does the result for this year‘s exam 
represent a systematic change or only random  fluctuation?
  Investigate hypothesis with the help of the one sample z-
test using the 7-point scheme outlined on the previous slide

 

One sample z test

Hypothesis tests



The average note in the final biostatistics exam of biomedicine 
students at the University Mainz from the last 5 years was 2.2 with a 
known variance of 0.9. The average note of the 49 students who 
took the exam this year was 1.8. Does the result for this year‘s exam 
represent a systematic change or only random  fluctuation?

1. Evaluation of test assumptions
§ Normally distributed random variable and known population 

variance
2. Definition of the null and alternative hypothesis
§ Null hypothesis: The average note of biomedicine students in 

statistics is 2.2
H0: µ = 2.2

§ Alternative: The average note of biomedicine students in 
statistics is not 2.2.

H1: µ ≠ 2.2             two-sided test
  

One sample z test example

Hypothesis tests



The average note in the final biostatistics exam of biomedicine 
students at the University Mainz from the last 5 years was 2.2 with a 
known variance of 0.9. The average note of the 49 students who 
took the exam this year was 1.8. Does the result for this year‘s exam 
represent a systematic change or only random  fluctuation?

3. Definition of significance level
§ α = 0.05 (type I error = 5 %) 

4. Calculation of the test statistic

𝑇 =
C𝑋	 −	𝜇-
𝜎 𝑛

K𝑋 = 1.8, 𝜇- = 2.2, 𝜎 = 0.9 , n  = 49

𝑇 =
1.8	 − 2.2

0.9
49 = −2.951

One sample z test example

Hypothesis tests



The average note in the final biostatistics exam of biomedicine students at 
the University Mainz from the last 5 years was 2.2 with a known variance of 
0.9. The average note of the 49 students who took the exam this year was 
1.8. Does the result for this year‘s exam represent a systematic change or 
only random  fluctuation?

5. Definition of the rejection region based on the probability distribution of 
the test statistic, critical values specification
§ When assumptions of the test are met, the test statistic follows a 

standard normal distribution, T ~ Ɲ(0,1). 
§ Critical values for a two sided test: 

±z1-α/2 = ±z1-0.025 = ±z0.975 = ±1.96

One sample z test example

Hypothesis tests

= α/2 



The average note in the final biostatistics exam of biomedicine students at 
the University Mainz from the last 5 years was 2.2 with a known variance of 
0.9. The average note of the 49 students who took the exam this year was 
1.8. Does the result for this year‘s exam represent a systematic change or 
only random  fluctuation?

6. Comparison of the test statistic with critical values
 T = -2.951 < -z0.975 = -1.96
§ Test statistic exceeds the critical value 

One sample z test example

Hypothesis tests

T = - 2.951



The average note in the final biostatistics exam of biomedicine students at 
the University Mainz from the last 5 years was 2.2 with a known variance of 
0.9. The average note of the 49 students who took the exam this year was 
1.8. Does the result for this year‘s exam represent a systematic change or 
only random  fluctuation?

7. Decision to retain/reject null hypothesis and interpretation
§ Null hypothesis is rejected
§ Interpretation: 

The average note of biomedicine students in statistics this year is 
significantly different from the 5 year-average. 

One sample z test example

Hypothesis tests



• Usually, the desired outcome of a hypothesis test is to find 
sufficient empirical evidence to reject the null hypothesis.

• Even if H1 is true, we still might fail to reject H0 (Type II error: false 
negative)

• Type II errors can have serious consequences especially in the 
field of clinical research

• Power = 1 – β, probability to reject a false H0

• Ways to increase power of a test:
• Increase the significance level
• Increase sample size

Power of  a test 

Hypothesis tests



• Power can only be calculated for specific values of the 
parameters under the alternative hypothesis.

• The average note in the final biostatistics exam of biomedicine 
students at the University Mainz from the last 5 years was 2.2 with 
a known variance of 0.9. The average note of the 49 students who 
took the exam this year was 1.8. What is the power of a two-sided 
z-test given the alternative hypothesis that µ1 = 1.9?

Power = P(T < -z0.975 or T > z0.975 │µ1 = 1.9) = ?

Power of  a test 

Hypothesis tests

�̅�!"#$ =	±
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Distribution of T under H0 Distribution of �̅� under H0



• Reject H0 if �̅� < 1.934	or �̅� > 2.466	

• Power = P(�̅� < 1.934	or  �̅� > 2.466	│ µ1 = 1.9)

Power of  a test 

Hypothesis tests

Distribution of �̅� under H1



• Reject H0 if �̅� < 1.934	or �̅� > 2.466	

• Power = P(�̅� < 1.934	or  �̅� > 2.466	│ µ1 = 1.9) = 0.599

Power of  a test 

Hypothesis tests

H0H1 H1



• Rejecting a null hypothesis does not automatically imply that 
results have practical relevance

• In large samples, even trivial differences might be statistically 
significant

• This calls for standard measures to evaluate effect size, e.g.:
• Standardized mean difference
• Percentage of variance explained by the model
• Odds ratio of disease in the presence of a risk factor
• Fold change of expression levels of a gene

• Effect sizes should be reported with results from significance tests

Effect size

Hypothesis tests



• Cohen‘s d is a measure of effect size evaluating standardized 
mean difference

• 𝐶𝑜ℎ𝑒𝑛.𝑠	𝑑 = +!	(	+"
&

• Reference values:
• d = 0.2 – small effect
• d  = 0.5 – medium effect
• d > 0.8 – large effect

• E.g. The average note of biomedicine students from this year‘s 
exam �̅� = 1.8	was shown to be significantly different from the 5-
year average of 2.2. What is the effect size?

𝑑	 =
1.8	 − 2.2

0.9
= 0.422

Effect size example

Hypothesis tests



• Controlled clinical experiments are associated with significant 
costs and time

• Failing to detect a true alternative hypothesis could be detrimental
• From a statistical point of view, studies are planned to maximize 

the chances of proving a study hypothesis which is also of 
practical relevance:
• Sample size is based on the level of power desired to be 

achieved, typically 80%
• Effect size is based on theoretical knowledge or pilot 

investigations

Power and effect size in controlled experiments

Hypothesis tests


