

Examining repeats with databases

Miguel Andrade Faculty of Biology, Johannes Gutenberg University Mainz, Germany andrade@uni-mainz.de

RepeatsDB

About Browse Search Stats Help

News

RepeatsDB v3.0 Release: 2020-09-15 More info

Start

For a fast search use the topright search box. Alternatively, visit the browse and search pages.

Contact

For questions and/or comments, please write to us at BioComputing UP.

Follow @BiocomputingUP

5 Citing RepeatsDB RepeatsDB in 2021: improved data and extended

RepeatsDB is a database of annotated tandem repeat protein structures. The database provides unit position, classification and reference to other databases. To start using RepeatsDB, please try the search box (top-right corner), the advanced search or the browse page.

IDs or free text

Search

Check our web server RepeatsDB-lite for interactive prediction of repeat units in protein structures.

RepeatsDB contains the following repeat classes:

Class		Description	UniProt	PDBs	PDB chains	Regions	Units	Example
1	Sleet Litte	Crystalline aggregates	0	3	3	3	0	-
2	×.	Fibrous repeat	21	39	86	86	393	P04115

RepeatsDB

https://repeatsdb.bio.unipd.it/structure/3vbpA

-								
Ρ	DB chai	n sequenco	e		PDB Struct	ure		
Tan are	idem repeats shov in yellow.	n on the PDB sequence,	in alternating blue and re	ed. Insertions	Tandem repeats shown on the are in yellow.	PDB structure, in alter	rnating blue and red.	Insertions
1 46 91 136 181	MGSHHHHHHEN SIYNPGVISIG GIEMYDFANIS ILKKHVIIGAH PVRKIKARKRK	YFQ GHMNSFYSQEEL NNVR IDDFCILSGKVT SRTI VYAAINDFSGNA SIIF PNVVIGEGVAVG IVEL ENEFLKSMNS	KKI GFLSVGKNVLIS FIGS YSHIAAYTALYG ALMG PTIPNQYKNVKT GAMS MVKESLDDWYIY	Multipl	e structural ali ad PDB file nows the structural overlappir	gnment		Ø
	The Viewer sh	d FASTA file ows the sequence overl	alignment	S B B B B B B B B B B	S E E E E E E E E E E	GNALMGPT(28 . 30 . 32 . 34 . 4	GPNQYKNV 38 . 38 . 40 . 42 .	KTGK
	3 3vbpA 4 3vbpA 5 3vbpA	_54_74.pdb - _36_53.pdb - _15_35.pdb F	V T I G S Y S H I S I G N N V R L S V G K N V L	I A A Y T A I D D F C I I S K K A S	L Y G G E V	· · · · · · · · · · ·	G	

6

3vbpA 75 117.pdb

IEMYDFANISSRTIVYAA - - INDFS - GNALMGPTIPN

OY

GK

Exercise 1. Examining repeat structures in repeatsDB

•Go to RepeatsDB: <u>http://repeatsdb.bio.unipd.it/</u>

•Click the "Search" tab, then search "Repeat unit number"

•Choose one example and write down the PDB name (e.g. 6yc3B).

•Check the assignment of the units. Is it correct? What about insertions? Are there mistakes? Write an evaluation: Looks good / one repeat wrong / many mistakes / total mess

Example

https://repeatsdb.bio.unipd.it/structure/5cxbB

- 1. looks good
- 2. one repeat wrong
- 3. many mistakes
- 4. total mess

Evolution of homorepeats in 50 species

Context and evolution of homorepeats

dAtabase of PolyX Evolution

Mier et al. (2016) Bioinformatics

Context and evolution of homorepeats

cin

hsa	ENS	P00000244	4769	1
ptr	ENSI	PTRP0000	0057036	
pab	ENSI	PPYP0000	0018177	1
mmul	ENSI	MMUP000	00003929	
mmu	ENSI	MUSP000	00137439	
rno	ENSI	RNOP0000	00023140	
bta	ENSI	BTAP0000	0042169	
gga	ENS	GALP0000	0020719	
xtr	ENS	XETP0000	0030985	
dre	ENSI	DARP0000	0134028	-
dre	ENSI	DARP0000	0124202	
tru	ENS'	TRUP0000	0037418	
tru	ENS	TRUP0000	0034401	1
cin	ENS	CINP0000	0029476	
cel	K04F	10.1		
dme	FBpp	0289092		
Human		27/29Q	000000	Q
Chimpa	nzee	21/230	000000	o

polyQ

Human	27/290	000000000000HOH00000000000000000000000
Chimpanzee	21/230	000000000H0H000000000
Orangutan	22/24Q	00000H000000H00000000
Macaque	15/150	000000000000000

hsa	ENSP000026229
ptr	ENSPTRP000000
pab	ENSPPYP000000
mmul	ENSMMUP000000
mmu	ENSMUSP00000
rno	ENSRNOP000000
bta	ENSBTAP000000
gga	ENSGALP000000
xtr	ENSXETP000000
dre	ENSDARP000000
cin	ENSCINP0000001

Human	15/18P
Chimpanz	ee 15/18P
Oranguta	n 20/24P
Macaque	21/25P
Mouse	21/26P
Rat	20/26P
Cattle	19/23P
Chicken	17/21P
Frog	18/20P
Zebrafis	h 16/17P
Ciona	12/13P

16070 09243 004522 060803)29761 28890 34156 56615 76880 3708

PPPPPPPPLPPPPPLAP
PPPPPPPPLPPPPPLAP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPLPPPPPPPPPPPPPPP
PPSPPPLPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPLLPLPPPPPPLPPPPPLAP
PPPPLPPPPPPPPLPPPPPTAP
PPPLPPPPPPPPPPPLPPPKLP
PPLPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPIPPPPPPP

F

dAtabase of PolyX Evolution

Mier et al. (2016) Bioinformatics

Exercise 2. Viewing homorepeats in an alignment with dAPE

•Find a random human protein in **UniProt**. Make sure that it is a reviewed entry. Write the Entry Name.

Entry 🔺	Entry Name 🔺	Protei	n Names 🔺		Gene Names 🔺		Organism 🔺
P36888	FLT3_HUMAN	Recep kinase	tor-type tyrosine-pro FLT3[]	otein	FLT3, CD135, FLK	2, STK1	Homo sapiens (Human)
A0A010RCP6	A0A010RCP6_9	PEZI	mRNA cleavage and polyadenylation factor CLP1	CLP	1, CFIO01_00097	Colletotr	ichum fioriniae PJ7

Exercise 2. Viewing homorepeats in an alignment with dAPE

•Find a random human protein in **UniProt**. Make sure that it is a reviewed entry. Write the Entry Name.

•Copy the Entry ID (e.g. P10275).

•Go to the dAPE web page: <u>http://cbdm-01.zdv.uni-mainz.de/~munoz/polyx/</u>

•Use the Entry ID in option A

•Hit the "Report the evolution of its polyX" button

•Write down: (1) Which type of polyX has the human protein? (2) Which **additional** polyX not in the human protein were found in the orthologs?

Exercise 3. Find structures of short repeats

•Go to the PDB web page: https://www.rcsb.org/

•Go to Search > Advanced Search

•Type a short repeat in the Sequence Motif: as many repeats as possible; Use Mode PROSITE and RegExp (example: QQQQ / another example: [SP]SA[SP]SA[SP]SA)

•Click "count" to see if there are any cases

•Check the structure (3D View) to see if the repeat is in the structure (it could be disordered = absent)

•Write down the PDB name, RegExp and structure Example 3NB9 QQQQ alpha-helix Example 3FRC NNNN absent