Protein domains

Miguel Andrade

Faculty of Biology,
Institute of Organismic Molecular Evolution, Johannes Gutenberg University

Mainz, Germany
andrade@uni-mainz.de

Introduction

Protein domains are structural units (average 160 aa) that share:

Function
Folding
Evolution

Proteins normally are multidomain
(average 300 aa)

Introduction

Protein domains are structural units (average 160 aa) that share:

Function
Folding
Evolution

Proteins normally are multidomain
(average 300 aa)

Domains

Why to search for domains:

Protein structural determination methods such as X-ray crystallography and NMR have size limitations that limit their use.

Multiple sequence alignment at the domain level can result in the detection of homologous sequences that are more difficult to detect using a complete chain sequence.

Methods used to gain an insight into the structure and function of a protein work best at the domain level.

Domain databases SMART

Peer Bork http://smart.embl.de/

Manual definition of domain (bibliography)

Generate profile from instances of domain Search for remote homologs (HMMer) Include them in profile Iterate until convergence

Schultz et al (1998) PNAS
Letunic et al (2014) Nucleic Acids Research

Domain databases

Domain databases SMART

Domains detected by SMART

SH3

SH3

Src homology 3 domains

SMART
accession
number:
Description:

Interpro

abstract (IPR001452):

SM00326

Src homology 3 (SH3) domains bind to target proteins through sequences containing proline and hydrophobic amino acids. Pro-containing polypeptides may bind to SH 3 domains in 2 different binding orientations.

SH3 (src Homology-3) domains are small protein modules containing approximately 50 amino acid residues [(PUBMED:15335710), (PUBMED:11256992)]. They are found in a great variety of intracellular or membrane-associated proteins [(PUBMED:1639195), (PUBMED:14731533), (PUBMED:7531822)] for example, in a variety of proteins with enzymatic activity, in adaptor proteins, such as fodrin and yeast actin binding protein ABP-1.

The SH3 domain has a characteristic fold which consists of five or six beta-strands arranged as two tightly packed anti-parallel beta sheets. The linker regions may contain short helices. The surface of the SH3-domain bears a flat, hydrophobic ligand-binding pocket which consists of three shallow grooves defined by conservative aromatic residues in which the ligand adopts an extended left-handed helical arrangement. The ligand binds with low affinity but this may be enhanced by multiple interactions. The region bound by the SH3 domain is in all cases proline-rich and contains PXXP as a core-conserved binding motif. The function of the SH3 domain is not well understood but they may mediate many diverse processes such as increasing local concentration of proteins, altering their subcellular location and mediating the assembly of large multiprotein complexes [(PUBMED:7953536)].

The crystal structure of the SH3 domain of the cytoskeletal protein spectrin, and the solution structures of SH3 domains of phospholipase C (PLC-y) and phosphatidylinositol 3-kinase p85 alpha-subunit, have been determined [(PUBMED:1279434), (PUBMED:7684655), (PUBMED:7681365)]. In spite of relatively limited sequence similarity, their overall structures are similar. The domains belong to the alpha+beta structural class, with 5 to 8 beta-strands forming 2 tightlypacked, anti-parallel beta-sheets arranged in a barrel-like structure, and intervening loops sometimes forming helices. Conserved aliphatic and aromatic residues form a hydrophobic core (A11, L23, A29, V34, W42, L52 and V59 in PLC-y [(PUBMED:7681365)]) and a hydrophobic pocket on the molecular surface (L12, F13, W53 and P55 in PLC-y). The conserved core is believed to stabilise the fold, while the pocket is thought to serve as a binding site for target proteins. Conserved carboxylic amino acids located in the loops, on the periphery of the pocket (D14 and E22), may be involved in protein-protein interactions via prolinerich regions. The N - and C-termini are packed in close proximity, indicating that they are independent structural modules.
protein binding (GO:0005515)

Domain databases SMART

Sequence analysis

You may use either a Uniprot/Ensembl sequence identifier (ID) / accession number (ACC) or the protein sequence itself to perform the SMART analysis service.

Sequence ID or ACC

[^0]
Domain databases

Extra features:
Signal-peptide,
low complexity, TM, coiled coils

VPS10

Confidently predicted domains, repeats, motifs and features:

| Name | Begin | End | E-value |
| :---: | :---: | :---: | :---: | :---: |
| signal peptide | 1 | 36 | - |
| VPS10 | 125 | 741 | $0.00 \mathrm{e}+00$ |
| LY | 761 | 806 | $2.88 \mathrm{e}+00$ |
| LY | 807 | 851 | $3.94 \mathrm{e}-04$ |
| LY | 852 | 896 | $5.31 \mathrm{e}-10$ |
| LY | 897 | 939 | $1.76 \mathrm{e}-15$ |
| low complexity | 968 | 979 | - |
| EGF | 1006 | 1042 | $1.87 \mathrm{e}+01$ |
| LDLa | 1059 | 1098 | $2.69 \mathrm{e}-10$ |
| LDLa | 1100 | 1138 | $1.62 \mathrm{e}-13$ |
| EGF_like | 1138 | 1177 | $5.24 \mathrm{e}+01$ |
| LDLa | 1139 | 1178 | $1.46 \mathrm{e}-11$ |
| LDLa | 1193 | 1230 | $2.07 \mathrm{e}-11$ |
| LDLa | 1240 | 1278 | $2.91 \mathrm{e}-06$ |
| LDLa | 1286 | 1321 | $3.21 \mathrm{e}-08$ |
| LDLa | 1326 | 1369 | $1.27 \mathrm{e}-06$ |
| FN3 | 1370 | 1448 | $1.36 \mathrm{e}-03$ |

Additional information
Display other IDs, orthology and alternative splicing data for this sequence.
Domain architecture analysis
This domain architecture was probably invented with the emergence of Hydra viridis.
Display all proteins with similar domain organisation.
Display all proteins with similar domain composition.

transmembrane 15841606

Domain databases SMART

The following proteins have the same domain composition as your query protein． You can display the domain architecture of ALL（17）or selected（below）proteins．
If you want only single domain sequences in the fasta file，type domain name here： \qquad

Taxonomic tree of query results．

－「 Eukaryota（17）
■－\square Metazoa（17）
－\square Arthropoda（5）

```
Protein UPI000013D0日1 (source)
Description
Species
Domain architecture
irvented in
    Sortilin-related receptor precursor (Sorting protein-related receptor containing LDLR class A repeats) (SorLA) (SorLA-1) (Low-density lipoprotein receptor relative with 11 ligand－binding repeats）（LDLR relative with 11 ligand－binding repeats）（LR11）
Homo sapiens
Eutheria
irvented in
CLUST＿UPI000013D0日1
Representative of protein cluster 200
```

Due to overlapping domains，there are 4 representations of the protein

Domain databases SMART

There are 43703 EGF domains in 14525 proteins in SMART's nrdb database.

Click on the following links for more information.

\square Evolution (species in which this domain is found)

∇ Structure (3D structures containing this domain)

3D Structures of EGF domains in PDB

$1 \mathrm{a} 3 \mathrm{p}, 1 \mathrm{adx}, 1 \mathrm{cqe}, 1 \mathrm{cqe}, 1 \mathrm{cvu}, 1 \mathrm{cvu}, 1 \mathrm{cw}, 1 \mathrm{cx} 2,1 \mathrm{cx} 2,1 \mathrm{cx} 2,1 \mathrm{cx} 2,1 \mathrm{ddx}, 1 \mathrm{ddx}, 1 \mathrm{ddx}, 1 \mathrm{ddx}, 1 \mathrm{diy}, 1 \mathrm{dqb}, 1 \mathrm{dx} 5,1 \mathrm{dx} 5,1 \mathrm{dx} 5,1 \mathrm{dx} 5,1 \mathrm{ebv}, 1 \mathrm{egf}, 1 \mathrm{epg}, 1 \mathrm{eph}$, $1 \mathrm{epi}, 1 \mathrm{epj}, 1 \mathrm{eqg}, 1 \mathrm{eqg}, 1 \mathrm{eqh}, 1 \mathrm{eqh}, 1 \mathrm{esl}, 1 \mathrm{fe} 2,1 \mathrm{fs}, 1 \mathrm{fs}, 1 \mathrm{~g} 1 \mathrm{q}, 1 \mathrm{~g} 1 \mathrm{q}, 1 \mathrm{~g} 1 \mathrm{q}, 1 \mathrm{~g} 1 \mathrm{q}, 1 \mathrm{~g} 1 \mathrm{r}, 1 \mathrm{~g} 1 \mathrm{r}, 1 \mathrm{~g} 1 \mathrm{r}, 1 \mathrm{~g} 1 \mathrm{r}, 1 \mathrm{~g} 1 \mathrm{~s}, 1 \mathrm{~g} 1 \mathrm{~s}, 1 \mathrm{~g} 1 \mathrm{t}, 1 \mathrm{gk} 5,1 \mathrm{gl} 4,1 \mathrm{hae}, 1 \mathrm{haf}$, $1 \mathrm{hcg}, 1 \mathrm{hre}, 1 \mathrm{hrf}, 1 \mathrm{ht} 5,1 \mathrm{ht} 5,1 \mathrm{ht} 8,1 \mathrm{ht} 8,1 \mathrm{igx}, 1 \mathrm{igz}, 1 \mathrm{ijq}, 1 \mathrm{ijq}, 1 \mathrm{iox}, 1 \mathrm{ipo}, 1 \mathrm{ivo}, 1 \mathrm{ivo}, 1 \mathrm{jgc}, 1 \mathrm{jbu}, 1 \mathrm{jlg}, 1 \mathrm{jlg}, 1 \mathrm{k} 36,1 \mathrm{k} 37,1 \mathrm{kig}, 1 \mathrm{kli}, 1 \mathrm{kj}, 1 \mathrm{kye}, 1 \mathrm{mox}, 1 \mathrm{mox}$, $1 \mathrm{mq} 5,1 \mathrm{mq} 6,1 \mathrm{nql}, 1 \mathrm{pgj}, 1 \mathrm{pge}, 1 \mathrm{pge}, 1 \mathrm{pgf}, 1 \mathrm{pgf}, 1 \mathrm{pgg}, 1 \mathrm{pgg}, 1 \mathrm{prh}, 1 \mathrm{prh}, 1 \mathrm{pth}, 1 \mathrm{pth}, 1 \mathrm{pw}, 1 \mathrm{pw}, 1 \mathrm{p} \infty, 1 \mathrm{pm}, 1 \mathrm{q} 4 \mathrm{~g}, 1 \mathrm{q} 4 \mathrm{~g}, 1 \mathrm{qfk}, 1 \mathrm{fn}, 1 \mathrm{pgg}, 1 \mathrm{u} 67,1 \mathrm{v} 3 \mathrm{x}$, $1 \mathrm{w} 7 \mathrm{x}, 1 \mathrm{w} 8 \mathrm{~b}, 1 \mathrm{xdt}, 1 \mathrm{xfe}, 1 \mathrm{ggc}, 1 \mathrm{yo} 8,1 \mathrm{yuf}, 1 \mathrm{yug}, 1 \mathrm{z} 1 \mathrm{y}, 1 \mathrm{z} 1 \mathrm{y}, 1 \mathrm{z} 27,1 \mathrm{z} 3 \mathrm{~g}, 1 \mathrm{z} 3 \mathrm{~g}, 1 \mathrm{z} 6 \mathrm{e}, 1 \mathrm{zaq}, 2 \mathrm{adx}, 2 \mathrm{ayl}, 2 \mathrm{ayl}, 2 \mathrm{bmg}, 2 \mathrm{bok}, 2 \mathrm{bq} 6,2 \mathrm{bq} 7,2 \mathrm{bqw}, 2 \mathrm{bz} 6,2 \mathrm{~d} 1 \mathrm{j}$, $2 d d u, 2 e 26,2 f z, 2 g 00,2 g d 4,2 g d 4,2 g y 5,2 g y 7,2 i g a, 2 i 9 a, 2 i 9 a, 2 i 9 a, 2 i 9 b, 2 i 9 b, 2 i 9 b, 2 i 9 b, 20 y e, 20 y u, 2 p 16,2 p 3 f, 2 p 3 t, 2 p 3 u, 2 p 93,2 p 94,2 p 95$, $2 p e 4,2 p r 3,2 p u q, 2 q 1 j, 2 r a 0,2 t g f, 3 e g f, 3 p g h, 3 p g h, 3 p g h, 3 p g h, 3 t g f, 4 \operatorname{cox}, 4 \operatorname{cox}, 4 \operatorname{cox}, 4 \operatorname{cox}, 4 \operatorname{tgf}, 5 \operatorname{cox}, 5 \operatorname{cox}, 5 \operatorname{cox}, 5 \operatorname{cox}, 6 \operatorname{cox}, 6 \operatorname{cox}$

Domain databases

 PFAM (until Jan 2023) Erik Sonnhammer/Ewan Birney/Alex Bateman http://pfam.xfam.org/```
HOME | SEARCH | BROWSE | FTP | HELP
```

Pfam 35.0 (November 2021, 19632 entries)
The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). More...

| QUICK LINKS | YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS... |
| ---: | :--- |
| SEQUENCE SEARCH | Analyze your protein sequence for Pfam matches |
| VIEW A PFAM ENTRY | View Pfam annotation and alignments |
| VIEW A CLAN | See groups of related entries |
| VIEW A SEQUENCE | Look at the domain organisation of a protein sequence |
| VIEW A STRUCTURE | Find the domains on a PDB structure |

Sonnhammer et al (1997) Proteins
Mistry et al (2021) Nucleic Acids Research

## Domain databases PFAM

This is the summary of UniProt entry SORL HUMAN心（Q92673心＇）．

```
Description: Sortilin-related receptor
Source organism: Homo sapiens (Human)心 (NCBI taxonomy ID 9606心')
 View Pfam proteome data.
 Length: }2214\mathrm{ amino acids
```

 UniProt entries may be removed after a Pfam release，these entries will not be removed from Pfam until the next Pfam data release．

## Pfam domains

This image shows the arrangement of the Pfam domains that we found on this sequence．Clicking on a domain will take you to the page describing that Pfam entry．The table below gives the domain boundaries for each of the domains．More．．



## Domain databases CDD

## Stephen Bryant

 http://www.ncbi.nlm.nih.gov/cddNCBI

Search for Conserved Domains within a protein sequence


Marchler-Bauer et al (2015) Nucleic Acids Res

## Domain databases CDD

Conserved domains on [1cl|seqsig_bd11f632eb7f5e37972cc8f915d494b1]
View full result
Local query sequence


## Domain databases

## SORLA/SORL1 from Homo sapiens

## SMART



PFAM

CDD
(4)(d) (d) 组

## InterPro



## InterPro

## SORLA/SORL1 from Homo sapiens

https://www.ebi.ac.uk/interpro/protein/reviewed/Q92673/


## InterPro

## SORLA/SORL1 from Homo sapiens

https://www.ebi.ac.uk/interpro/protein/reviewed/Q92673/

- Homologous Superfamily


## 6-blade_b-pro...

WD40/W...


- Repeat



## InterPro

## SORLA/SORL1 from Homo sapiens

https://www.ebi.ac.uk/interpro/protein/reviewed/Q92673/

## InterPro

## SORLA/SORL1 from Homo sapiens

https://www.ebi.ac.uk/interpro/protein/reviewed/Q92673/


## InterPro

## SORLA/SORL1 from Homo sapiens

https://www.ebi.ac.uk/interpro/protein/reviewed/Q92673/


## InterPro

##  Pfam entry ${ }^{\ominus}$



## InterPro

## Fibronectin type III domaine Wakipedia

The Fibronectin type III domain is an evolutionarily conserved protein domain that is widely found in animal proteins. The fibronectin protein in which this domain was first identified contains 16 copies of this domain. The domain is about 100 amino acids long and possesses a beta sandwich structure. Of the three fibronectin-type domains, type III is the only one without disulfide bonding present. Fibronectin domains are found in a wide variety of extracellular proteins. They are widely distributed in animal species, but also found sporadically in yeast, plant and bacterial proteins.


## InterPro

Domain Architectures 20 k
Taxonomy 22
Proteomes 5 k
Structures 324

Signature
AlphaFold 123 k
Alignment
Curation
(1) The number of species for this sunburst is 13055 . The depth of the visualisation has been limited. You can modify this with the controller in the right side. however, please note this might affect the performance in your browser.


Legends
viruses archaea
eukaryota

Weight Segments by
Number of sequences

Font Size

Sunburst Depth
6 rings
2 $\qquad$
Selected Taxon

## Name

Chordata
Number of sequences
178358
Number of species
1738

## Lineage

root; Eukaryota; Metazoa; Chordata;

## InterPro

## Pイด@ PF00041 Fibronectin type III domain <br> \section*{Pfam entry}

44 This entry matches these structures:


## Exercise 1

## Find structures in the PDB for human myosin $X$

The corresponding UniProt page is
https://www.ebi.ac.uk/interpro/protein/reviewed/Q9HD67/

## Q9HD67 Unconventional myosin-X

UniProtKB/Swiss-Prot protein

| Overview | 41 | Short name | MYO10_HUMAN |
| :---: | :---: | :---: | :---: |
| Entries | 18 | Length | 2058 amino acids |
| Structures | 7 | Species | Homo sapiens (Human) |
| Sequence |  | Proteome | UP000005640 |
| Similar Proteins | 90 1 | Function ${ }^{(1)}$ | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. MYO10 binds to actin filaments and actin bundles and functions as a plus end-directed motor. Moves with higher velocity and takes l... <br> Show More ₹ |

## Exercise 1

## Find structures in the PDB for human myosin $X$

Tip: The details of the structures are at the bottom of the page. You have to slide down.

- Which domains of myosin $X$ are covered by the solved structures?
- Is there a part of the protein for which there are no know structures? Does it have predicted domains?


## Exercise 2

## Analyse domain predictions

Slide down to see the details of the structures.
This protein matches these structures:


## Exercise 2 Analyse domain predictions

- Examine the structure of 3pzd How do the domain predictions fit the structure?
- Chain B in this structure is a small peptide. Which domain in Myosin X is interacting with this peptide?


## Exercise 3 AlphaFold prediction

- There is a predicted structure

Q9HD67 Unconventional myosin-X
UniProtKB/Swiss-Prot protein

|  |  |
| ---: | :---: |
| Overview |  |
| Entries | 18 |
| Structures | 7 |
| Sequence |  |
| Similar Proteins | 90 |
| AlphaFold | 1 |


| Short name | MYO10_HUMAN |
| :--- | :--- |
| Length | 2058 amino acids |
| Species | Homo sapiens (Human) |
| Proteome | UP000005640 |
| Function (i) | Myosins are actin-based motor molecules with ATPase activity. Unconventional <br> myosins serve in intracellular movements. MYO10 binds to actin filaments and <br> actin bundles and functions as a plus end-directed motor. Moves with higher <br> velocity and takes l... <br> Show More |

## Exercise 3

## AlphaFold prediction

- There is a predicted structure
- Download the PDB file and load it in Chimera
- Select the central region without PDB information (Select/Atom specifier), 934-1485, inverse the selection, and delete everything else
(Actions/Atoms/Delete).
Describe the structure predicted for this region and how this could affect structure determination.
- Examine the PH domains. How many domains do you see? Is there anything particular about them?


## Exercise 3

## AlphaFold prediction





[^0]:    Sequence SMART Reset

