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Why do we study the human interactome?




Network theory
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Hyperbolic network model

Euclidean Hyperbolic PS model in 2D Hyperbolic PS model in 3D




PS model

1) Node Sorting: Nodes are sorted in decreasing order

A A by degree
v
4 o 2) Starting Point: The first node is placed at the center
3903 3 @1? and it gets a random angle
.’ ot ".'\- \."
2 " 2- Ba™ : 3) Expanding the Space: embedding new nodes:
1 'I' ".’/ . .-_l- 2 \M I \ \
‘ |.' , ," % 4 "-,I | Ii * Distance from Center: in the new node assigned
335 50 13 3 an -~ _i;,’ _'2 mr > S 1, B radial coordinate ri = 2Inj
X \ \ // .
| ! ! I .l ’ ‘.‘.\ — / |
- ' / * Adjusting Positions: The positions of existing nodes
—Z 2 Wl I N S are adjusted based on their distances from the
-3 . % new node (rj(i) =B rj+(1-8)ri)
N e ) xhs——-— il
* * Finding the Best Angle: The new node is given an
¥ = anglular coordinate that maximizes the likelihood
Y of the PS model
4) Repeat for All Nodes: Steps 2 and 3 are repeated
. . . for every node in the network.
Euclidean Coordinates (x, y) Polar Coordinates (r, theta)




hPIN in the Hyperbolic Space
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hPIN in the Hyperbolic Space
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Hyperbolic applications

nature > scientific reports > articles > article nature > nature communications > articles > article

Article | Open access | Published: 06 August 2021 Article | Open access | Published: 05 May 2021
Deep generative model embedding of single-cell RNA-
Seq profiles on hyperspheres and hyperbolic spaces

The inherent community structure of hyperbolic

networks

Jiarui Ding = & Aviv Reggg

Bianka Kovécs & Gergely Palla &

Nature Communications 12, Article number: 2554 (2021) ‘ Cite this article

Scientific Reports 11, Article number: 16050 (2
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 12, DECEMBER 2022 10023

Hyperbolic Deep Neural Networks: A Survey

Wei Peng"ffi, Tl{omas Varanka, Abdelrahman Mostafa,
Henglin Shi®”, and Guoying Zhao™, Fellow, IEEE

Abstract—Recently, hyperbolic deep neural networks (HDNNs) have been gaining momentum as the deep representations in the
hyperbolic space provide high fidelity embeddings with few dimensions, especially for data possessing hierarchical structure. Such

a hyperbolic neural architecture is quickly extended to different scientific fields, including natural language processing, single-cell
RNA-sequence analysis, graph embedding, financial analysis, and computer vision. The promising results demonstrate its superior
capability, significant compactness of the model, and a substantially better physical interpretability than its counterpart in the euclidean
space. To stimulate future research, this paper presents a comprehensive review of the literature around the neural components in the
construction of HDNN, as well as the generalization of the leading deep approaches to the hyperbolic space. It also presents current
applications of various tasks, together with insightful observations and identifying open questions and promising future directions.

Index Terms—Neural networks on Riemannian manifold, hyperbolic neural networks, Poincaré model, Lorentz model




Function of PPlIs
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Molecular annotations of PPlIs

The Molecular Interactions (Ml) ontology forms a structured controlled vocabulary for the
annotation of experiments concerned with protein-protein interactions.

assss translating
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HUMAN PROTEOME ORGANIZATION




Interaction type

Molecular association

}

Association

!

Colocalization

l

Proximity

Functional association

Predicted Phenotype result

!

Multiple Perturbation Phenotype result

iinl il Aphenotypic Phenotype Cisphenotypic Monophenotypic Multigenetic Transphenotypic
yeicalassociation Result Phenotype Result Phenotype Result Phenotype Phenotype
l / / Result Result
Direct interaction 3
Aphenotypic Neutral psi mi:MI:0794 Deleterious Multigenic Genetic interaction Neutral Multlgemc Phenotype
/ / x Multigenic Phenotype Result Synthetic Genetic Phenotype Result Result
Colavent binding  Enzymatic reaction Putative self reaction  Self interaction interaction
l - phosphorylation reaction
— dephosphorylation reaction
Disulfide bond . .
— hydroxylation feac"'o"/v protein cleavage Genetic interaction (sensu psi mi:MI:0796 Genetic interaction Negative genetic interaction ~ Synthetic growth interaction Synthetic haploinsufficiency
. lipoprotein cleavage reaction phenotype modification) (sensu unexpected) (sensu Biogrid) (sensu Biogrid) (sensu Biogrid)
—— cleavage reaction é‘ rna cleavage reaction
. . transglutamination reaction
— methylation reaction » converging genetic interaction —# Psi mi:MI:0796 Genetic interaction (sensu unexpected)
— demethylation reaction
— glycosylation reaction —» genetic epistasis
— acetylation reaction
deacetylation reaction 3 surpassing genetic interaction
— ubiquitination reaction
— transphenotypic enhancing genetic interaction
— deubiquitination reaction
L diverging genetic interaction
— nucleoside triphosphatase reaction — gtpase reaction
— adp ribosylation reaction l \
— guanine nucleotide exchange factor reaction genetic enhancement negative genetic interaction psi mi:MI:0794 synthetic genetic
interaction

— isomerase reaction — palmitoylation reaction
—p lipid addition — proline isomerization reaction

neddylation reaction (https://www.ebi.ac.uk/ols/ontologies/mi)




Why do we focus on PTMs?
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Computational analysis

Proteomics analysis
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What is machine learning?

Supervised Learning

Labeled Data
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Machine

/ i \

Supervised Unsupervised
Classification Regression Clustering Dimension
Reduction

Predicting a Predicting a Identify a pattern
categorical numeric variable or groups of Reduces the
variable similar objects number of variables

Input: Labeled data being considered to
Input: Labeled set Algorithms find the exact
data set Output—Continuous K-Means information
Output: Discrete Values Clustering required
values Algorithms ANN (Artificial
Algorithms: Linear Regression Neural Networks) Algorithms
Decision Trees Decision Trees Principal
Support Vector Random forests component
Machines Analysis (PCOA)




Features

Computational analysis
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RF model
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Feature importance
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MAPK3 protein kinase

| I RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
| regulation of intracellular signal transduction
| Fregulation of gene expression
I ol
I protein ubiquitination
| I protein phosphorylation
) [ posmive reguration of transcrption, DNA-templated
l | I positive regulation of transcription by RNA polymerase Il

| I negative regulation of transcription, DNA-templated
I negative regulation of cellular macromolecule biosynthetic process
 mRNA splicing, via spliceosome
F mRNA processing
I gene expression
I DNA metabolic process -Iog(p value)
| I cytokine-mediated signaling pathway

| Fcellular response to DNA damage stimulus I 100
I | | cellular protein modification process 55

I ubiquitin protein ligase binding 60

Biological Process

I ubiquitin-like protein ligase binding 40

i [ purine ribonucleoside triphosphate binding

I protein serine/threonine kinase activity

‘ I protein kinase binding

I protein homodimerization activity

Molecular Function

‘ I kinase binding

I GTPase binding

\ [ L DNA binding

I DNA-binding transcription factor binding

‘ ‘ I cadherin binding

Predicted non-IIDTM effectors Predicted F’11'M effectors




Spinocerebellar ataxia 1 (SCA1)

Molecular mechanisms of SCA1 pathogenesis
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SCA1 cell model- Predicted PTMs
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Next steps

Experimental validation
of the predicted directed PTMs

Experimental verification of the
suggested drugs Explore hyperbolic geometry
in different biological data
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Thank youl!
Any questions?




Let’s play...

HIPPIE » Human Integrated Protein-Protein Interaction rEference

NETWORK QUERY BROWSE SCREEN ANNOTATION DOWNLOAD INFORMATION

Welcome to HIPPIE, a web tool to generate reliable and meaningful human protein-protein interaction networks

Please enter a single UniProt identifier (accession), gene symbol or Entrez gene id

(e.g. HD_HUMAN, P42858, HTT or 3064)

Here, you can query HIPPIE for the interaction partners of a single protein J

NEWS

Apr 29, 2022 We just released HIPPIE v2.3

Feb 14, 2019 A new version of HIPPIE (v2.2) has been released today

Jul 18, 2017 The update to HIPPIE v2.1 contains 52,000 new interactions

Nov 3, 2016 A new paper is out describing the new functionality and data of HIPPIE v2.0

Jun 24, 2016 HIPPIE v2.0 has been released including new data and analyses options

Sep 01, 2015 We just released a new version of HIPPIE

Sep 05, 2014 We released a new version of HIPPIE featuring protein-protein interaction effect prediction and many new interactions
Oct 11, 2013 A new release of HIPPIE is available

Jan 8, 2013 Please check out our new publication on creating tissue- and function-specific networks with HIPPIE in PLOS Computational Biology

Please cite HIPPIE within any publication that makes use of this resource. Thanks!

http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/



http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php

B : : HIPPIE » Human Integrated Protein-Protein Interaction rEference
HIPPIE » Human Integrated Protein-Protein Interaction rEference

PROTEIN QUERY ETWORK C R BROWSE SCREEN ANNOTATION DOWNLOAD INFORMATION

ETWORK QUERY BROWSE SCREEN ANNOTATION DOWNLOAD INFORMATION

Construction of a HIPPIE subnetwork from an input query set of proteins or interactions

Welcom@ to HIPPIE, a web tool to generate reliable and meaningful human protein-protein interaction networks ) . .
!np‘l a list of proteins/interactions
Please enter a single UniProt identifier (accession), gene symbol or Entrez gene id
(e.g. HD_HUMAN, P42858, HTT or 3064) Examplafipos Alternatively, choose a file to upload
Query'set nmEdnmeD Choose File | No file chosen
Here, you can query HIPPIE for the interaction partners of a single protein J
4
Or chdck out further gquery options and examples
(this may take a while)
NEWS
Apr 29, 2022 W just released HIPPIE v2.3 Lavers
Feb 14, 2019 Alnew version of HIPPIE (v2.2) has been released today Gupud Output type Libetwsen Inpiit-and HIPPIEY Y
Jul 18, 2017 Thp update to HIPPIE v2.1 contains 52,000 new interactions [shdw in browser - visualization v Min. number of PPIs to query set
Nov 3, 2016 A rlew paper is out describing the new functionality and data of HIPPIE v2.0 L o
Jun 24, 2016 HIPPIE v2.0 has been released including new data and analyses options
Inselt a threshold on the HIPPIE confidence score or, choose predefined confidence level
Sep 01, 2015 W just released a new version of HIPPIE Searatiitas Coptionat
i ; i i ; i i ) 0.9 [0.1)
Sep 05, 2014 W released a new version of HIPPIE featuring protein-protein interaction effect prediction and many new interactions
Oct 11, 2013 A few release of HIPPIE is available
O Association (M1:0914)
Jan 8, 2013 Pldase check out our new publication on creating tissue- and function-specific networks with HIPPIE in PLOS Computational Biology nteraction type filter Oehysical association (M1:0015)
(optional) O direct interaction (M1:0407)
O qolocalization (MI:0403)
Please cite HIPPIE withidany publication that makes use of this resource. Thanks!
one &
O Adipose - Subcutaneous
O Adipose - Visceral (Omentum) }nput of user defined filter set
O | Gland ]

Input: one protein

Input: list of protein




How many interactors ATXN1 has?

HIPPIE » Human Integrated Protein-Protein Interaction rEference

ETWORK QUERY BROWSE SCREEN ANNOTATION DOWNLOAD INFORMATION

Welcome to HIPPIE, a web tool to generate reliable and meaningful human protein-protein interaction networks

Please enter a single UniProt identifier (accession), gene symbol or Entrez gene id

(e.g. HD_HUMAN, P42858, HTT or 3064)

Here, you can query H]PPIE for the interaction partners of a single protein J

Or check out further gliery options and examples

NEWS

Apr 29, 2022 We just released HIPPIE v2.3

Feb 14, 2019 A new version of HJPPIE (v2.2) has been released today

Jul 18, 2017 The update to HIPPJE v2.1 contains 52,000 new interactions

Nov 3, 2016 A new paper is out fiescribing the new functionality and data of HIPPIE v2.0
Jun 24, 2016 HIPPIE v2.0 has bpen released including new data and analyses options
Sep 01, 2015 We just released § new version of HIPPIE

Sep 05, 2014 We released a nefv version of HIPPIE featuring protein-protein interaction effect prediction and many new interactions

Oct 11, 2013 A new release of HIPPIE is available

Jan 8, 2013 Please check outfour new publication on creating tissue- and function-specific networks with HIPPIE in PLOS Computational Biology

Please cite HIPPIE within any publication fhat makes use of this resource. Thanks!

Search: ATXN1

HIPPIE » Human Integrated Protein-Protein Interaction rEference

PROTEIN QUERY NETWORK QUERY BROWSE SCREEN ANNOTATION DOWNLOAD INFORMATION

Search results for ATX1 HUMAN / 6310 / ATXN1

Visualize this subnetwork.

See diseases, biological processes, molecular functions or cellular compartments significantly associated with proteins in this subnetwork.

J Copy table content H Export to TSV ‘Show 5

" score (cli n a score o
interactor - w5 g ? e : - 2 Interacting
UniProt id interglctor - Entrez gene id interactor - gene symbol I \ésggzsgef;e the vl proteins

Interactors of ATXN1

1433 HUMAN YWHAE
14337 HUMAN YWHAZ
ATX1 HUMAN ATXN1
CIC HUMAN 23152 cic
COIL HUMAN 8161 colL
UB2E1 HUMAN 7324 UBE2E1
KATS HUMAN 10524 KATS
3096 HIVEPL
11129 CLASRP
2597 GAPDH
7536 SF1
11338 U24F2
2035 GSPT1
3303, 3304 HSPA1A, HSPALB
6500 Skp1
TBLIR HUMAN 79718 TBLIXR1
UBP7 HUMAN 7874 usp7
CA094 HUMAN 84970 Clorfo4
CRK_HUMAN 1308 CRK

confidence score
S




How many interactors ATXN1 has with confidence score more than 0.717

HIPPIE » Human Integrated Protein-Protein Interaction rEference

PROTEIN QUERY RK QUER BROWSE SCREEN ANNOTATION DOWNLOAD INFORMATION

Construction of a HIPPIE subnetwork from an input query set of proteins or interactions

Input a list of proteins/interactions

Search: ATXN1 >

Example input: Alternatively, choose a file to upload

Query set pAlE Choose File | No file chosen

(this may take a while)

Layers
Output type [1 (between input and HIPPIE) v |
Output parameters g
text » show in browser - visualization v Min. number of PPIs to query set
[1 | [1nf)
Insert a threshold on the HIPPIE confidence score Or, choose predefined confidence level

Set to 0.71 Score filter (optional) > |0.01 | _— o =

O Association (MI1:0914)
Interaction type filter D physical association (MI1:0915)
(optional) [ pirect interaction (MI:0407)

[ colocalization (MI:0403)

O none =
(D Adipose - Subcutaneous

[J Adipose - Visceral (Omentum) Input of user defined filter set
[N adranal cland [ 1




How many interactors ATXN1 has with confidence score more than 0.71 that
are expressed in the cerebellum?

Example input: Alternatively, choose a file to upload

Query:set dnmt3a dnmesb Choose File | No file chosen

(this may take a while)

Layers
Output type I 1 (between input and HIPPIE) VI
Output parameters
[show in browser - text V] Min. number of PPIs to query set

L)

Insert a threshold on the HIPPIE confidence score Or, choose predefined confidence level

0.71 CBY

Score filter (optional)

(0 Association (MI1:0914)
Interaction type filter O Physical association (M1:0915)
(optional) O pirect interaction (MI:0407)
(O colocalization (MI:0403)

Onone 2.

[ Adipose - Subcutaneous

O adipose - Visceral (Omentum) Input of user defined filter set
O Adrenal Gland

DArtery - Aorta

D artery - Coronary

GArterv - Tibial

O ladder
Tissue filter O grain - Amygdala
(optional) [ i aotorioc o o >

[JBrain - Caudate (basal ganglia)
O erain - Cerebellar Hemisphere %
@ Brain - Cerebellum
Oerain - Cortex

Alternatively, choose a file to upload

Choose File | No file chosen

[ Rrain - Hinnacamnus

in |browser v

Functional filter S0 (Geng ontology), (slim) MeSH (Medical Subject Headings)

(optional) % biological_process
cellular_component

Diseases

@
@




How many interactors ATXN1 has, with confidence score more than 0.71 that are
expressed in the cerebellum and associated with neurodegenerative disease?

L1 uver vecases
1 Liver Diseases, Parasitic
1 Lung Diseases

Lung Diseases, Parasitic
Lymphatic Diseases

O00000000000000000000000000000O0Ot

GO (Gene ontology) (slim) Q

‘I biological_process
m

5 cellular_component

Functional filter

(optional) @O0 cell | Mammary Neoplasms, Animal
® [ [% extracellular region ) % Marijuana Abuse
@[] organelle (] Meningitis, Viral
=0 protein complex ] Mesomycetozoea Infections

Metabolic Diseases

Mink Viral Enteritis

I Mouth Diseases

™ Multiple Trauma

] Muscular Diseases

Muscular Dystrophy, Animal
Musculoskeletal Abnormalities
Mycoses

Myxomatosis, Infectious

"1 Nasal Septal Perforation

Neck Injuries

Neonatal Abstinence Syndrome
1 Neoplasms by Histologic Type
Neoplasms by Site

Neoplasms, Experimental
Neoplasms, Hormone-Dependent
1 Neoplasms, Multiple Primary

1 Neoplasms, Post-Traumatic

1 Neoplasms, Radiation-Induced
! Neoplasms, Second Primary

| Neoplastic Processes
Neoplastic Syndromes, Hereditary
Nervous System Malformations

Neuroc yndromes
Neurodegenerative Diseases
Neurologic Manifestations

o

1 Neurotoxicity Syndromes
Nose Diseases

Nose Diseases

Nutrition Disorders
Occupational Injuries
Ocular Hypertension
Ocular Hypotension
Ocular Motility Disorders
Opioid-Related Disorders
Opportunistic Infections
Opportunistic Infections
Optic Nerve Diseases
Orbital Diseases
Otorhinolaryngologic Neoplasms
Pancreatic Diseases

| Paraneoplastic Syndromes
| Parasitemia

Parasitic Diseases, Animal
Parasitic Diseases, Animal
I Parathyroid Diseases
Paratuberculosis
Parturient Paresis

O00000000000000000000000oooa
DL

DOEREOE

2

FIFF

fel [ Pathologic Processes

[0 [ Pathological Conditi ical
o [ Pelvic Floor Disorders

ol [ Peritoneal Diseases
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