Master Module Proteinbiochemistry and Bioinformatics December 2023

Protein interaction networks

Katja Luck, PhD

Some organizational information

- Questions throughout the lecture are welcome
- I will ask questions, too!
- Happy to receive feedback on the course

Outline

- 1. What are protein interactions?
- 2. Methods to detect protein interactions
- 3. Bioinformatic resources for protein interactions
- 4. Graph theoretical aspects of protein interaction networks
- 5. Visualizing and analyzing networks using Cytoscape

Master Module Proteinbiochemistry and Bioinformatics December 2023

Session: Protein interaction networks

1. What are protein interactions?

Why do protein interactions matter?

Protein interactions mediate cellular function

Protein interactions are complex

Non-covalent contacts between amino acids mediate protein interactions

Protein interaction strength is expressed as dissociation constant K_D

$$[A] + [B] \rightleftharpoons [AB]$$

$$K_{D} = \frac{[A][B]}{[AB]}$$

- the smaller the K_D , the stronger the interaction
- nM -> very strong, μ M -> rather weak
- it is a continuum!

When can we say that two proteins interact with each other?

- interaction strength (K_D) is a continuum
- there is no universal cutoff on the $\ensuremath{\mathsf{K}_{\mathsf{D}}}$
- discrimination into binding/no binding is assay-dependent

All life depends on the proper formation and dissociation of protein interactions

Mechanisms of protein interaction specificity?

If we knew all (human) protein interactions...

Master Module Proteinbiochemistry and Bioinformatics December 2023

Session: Protein interaction networks

2. Methods to detect protein interactions

Why is it so hard to detect protein interactions?

Approaches to detect protein interactions

https://www.ebi.ac.uk/ols/ontologies/mi

+transcriptional complementation assay

Different assays produce different types of protein interaction data

Direct assays

- Direct interactions
- Protein fragments
- With K_D
- Low-throughput

Binary assays

- Binary interactions
- Full length proteins
- No K_D
- Over-expression

Co-complex assays

- Co-complex associations
- Full length proteins
 No K_D
- Over-expression and endogenous

- All are called protein interactions
- Assays differ in which interactions they can detect

Accuracy of protein interaction assays

Sensitivity of protein interaction assays

Why are some interactions detected by some assays and not by others?

Accuracy of protein interaction assays Specificity of protein interaction assays Random protein pairs

Why would an assay erroneously report a protein interaction?

Accuracy of protein interaction assays

Correct benchmarking of assays

Correct interpretation of protein interaction data Low overlap

Low sensitivity High specificity

Braun et al Nature Methods 2009, Luck et al TiBS 2017

Functional relevance of detected protein interactions

Often artificial context when protein interaction is detected

At which cellular context is a detected protein interaction functional?

Should we delete 'non-functional' interactions?

Methods to detected protein interactions

Summary

- Interaction strength is a continuum
- Most common methods are direct, binary, and co-complex assays
- Different methods detect different types of protein interactions
- Many interactions remain undetected
- If properly controlled interaction data can be of high quality
- It is difficult to distinguish between functional and non-functional protein interactions