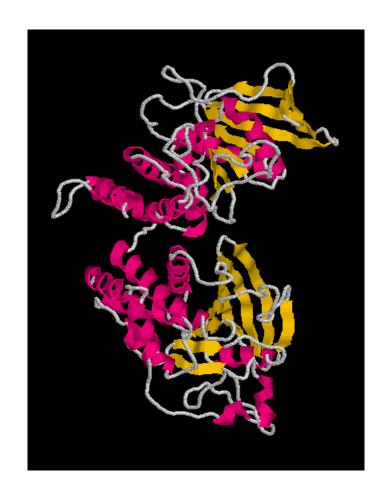


Protein domains

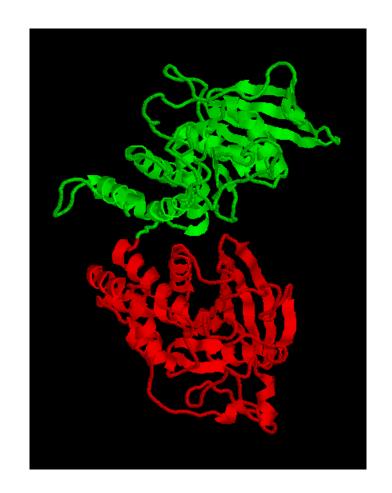

Miguel Andrade
Faculty of Biology,
Institute of Organismic Molecular Evolution,
Johannes Gutenberg University
Mainz, Germany
andrade@uni-mainz.de

Introduction

Protein domains are structural units (average 160 aa) that share:

Function Folding Evolution

Proteins normally are multidomain (average 300 aa)



Introduction

Protein domains are structural units (average 160 aa) that share:

Function Folding Evolution

Proteins normally are multidomain (average 300 aa)

Domains

Why to search for domains:

Protein structural determination methods such as X-ray crystallography and NMR have size limitations that limit their use.

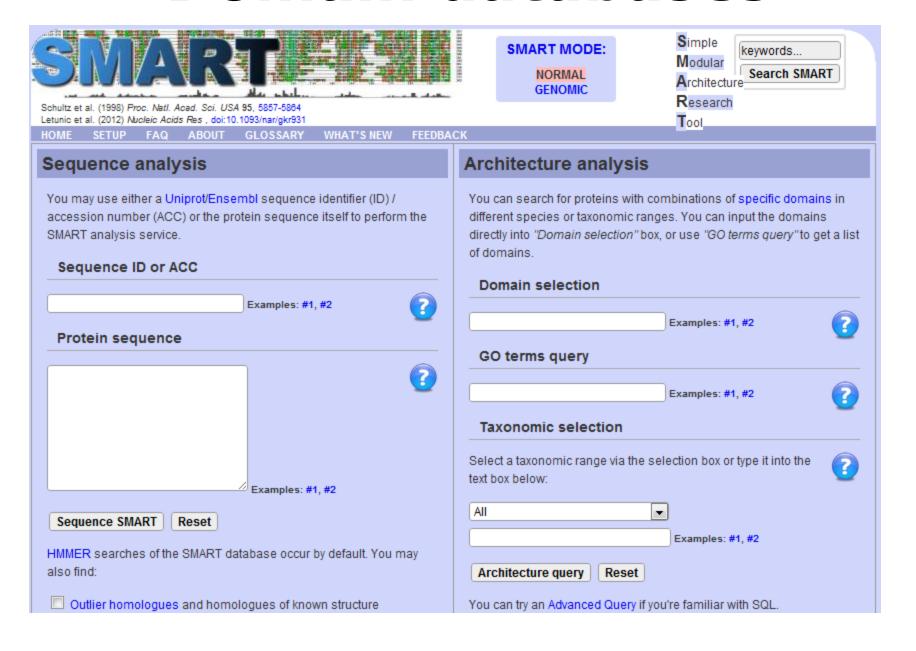
Multiple sequence alignment at the domain level can result in the detection of homologous sequences that are more difficult to detect using a complete chain sequence.

Methods used to gain an insight into the structure and function of a protein work best at the domain level.

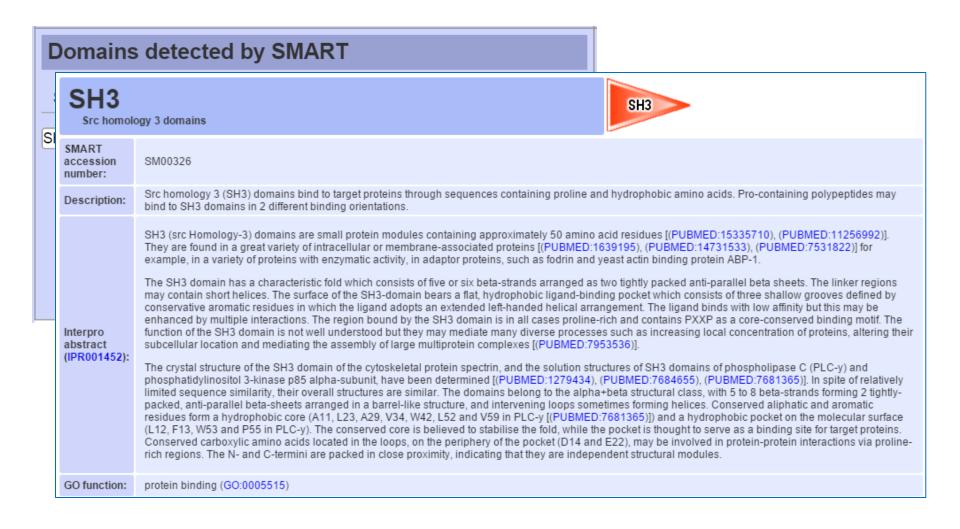
Domain databases SMART

Peer Bork http://smart.embl.de/

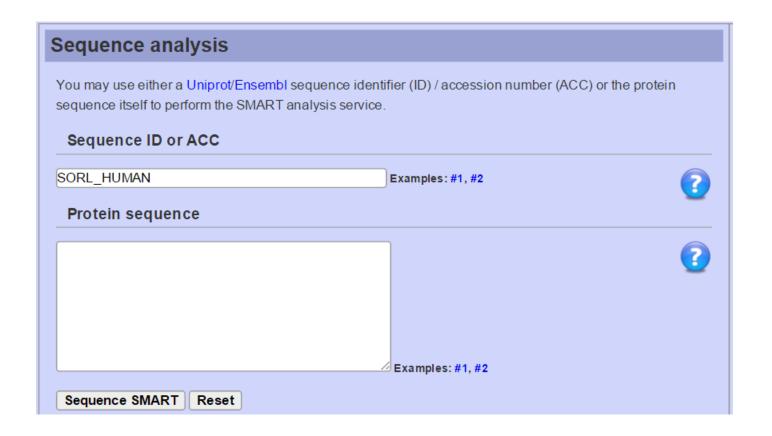
Manual definition of domain (bibliography)


Generate profile from instances of domain Search for remote homologs (HMMer) Include them in profile Iterate until convergence

Schultz et al (1998) PNAS


. . .

Letunic et al (2014) Nucleic Acids Research


Domain databases

Domain databases SMART

Domain databases SMART

Domain databases SMART

Extra features: Signal-peptide, low complexity, TM, coiled coils

Confidently predicted domains, repeats, motifs and features:

Dogin End Evalue

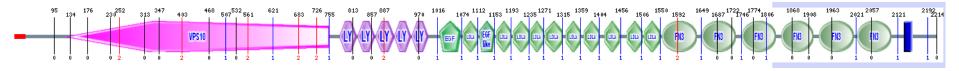
Name	Begin Fua		E-value	
signal peptide	1	36	-	
VPS10	125	741	0.00e+00	
LY	761	806	2.88e+00	
LY	807	851	3.94e-04	
LY	852	896	5.31e-10	
LY	897	939	1.76e-15	
low complexity	968	979	-	
EGF	1006	1042	1.87e+01	
LDLa	1059	1098	2.69e-10	
LDLa	1100	1138	1.62e-13	
EGF_like	1138	1177	5.24e+01	
LDLa	1139	1178	1.46e-11	
LDLa	1193	1230	2.07e-11	
LDLa	1240	1278	2.91e-06	
LDLa	1286	1321	3.21e-08	
LDLa	1326	1369	1.27e-06	
FN3	1370	1448	1.36e-03	
transmembrane	1584	1606	-	

Additional information

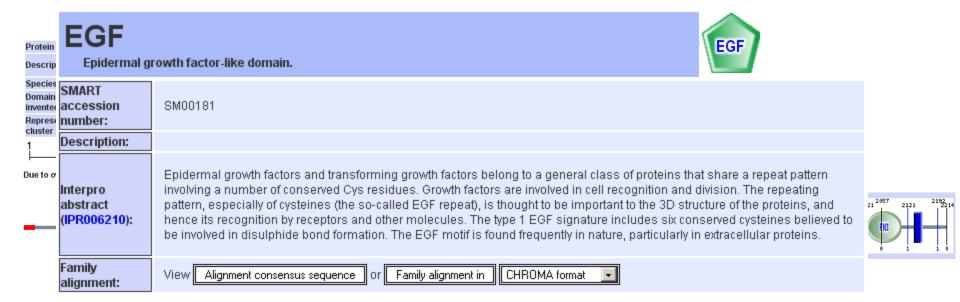
Display other IDs, orthology and alternative splicing data for this sequence.

Domain architecture analysis

This domain architecture was probably invented with the emergence of Hydra viridis.


Display all proteins with similar domain organisation.

Display all proteins with similar domain composition.


Domain databases SMART

The following proteins have the same domain composition as your query protein. You can display the domain architecture of ALL (17) or selected (below) proteins. If you want only single domain sequences in the fasta file, type domain name here:							
					Taxonomic tree of query results.		
□ Eukaryota (17) □ Metazoa (17)			yota (17)				
			tazoa (17)				
			Arthropoda (5)				
otein			UPI000013D0B1 (source)				
escription			Sortilin-related receptor precursor (Sorting protein-related receptor containing LDLR class A repeats) (SorLA) (SorLA-1) (Low-density lipoprotein receptor relative with 11 ligand-binding repeats) (LR11).				
ecies			Homo sapiens				
omain architecture vented in		ıre	Eutheria				
epres uster	entative of	protein	CLUST_UPI000013D0B1				
	100	200					

Due to overlapping domains, there are 4 representations of the protein

Domain databases SMART

There are 43703 EGF domains in 14525 proteins in SMART's nrdb database.

Click on the following links for more information.

Evolution (species in which this domain is found)

▽Structure (3D structures containing this domain)

3D Structures of EGF domains in PDB

1a3p, 1adx, 1cqe, 1cqe, 1cvu, 1cvu, 1cvu, 1cxv, 1cx2, 1cx2, 1cx2, 1ddx, 1ddx, 1ddx, 1ddx, 1ddx, 1ddx, 1dx5, 1dx5, 1dx5, 1dx5, 1dx5, 1ebv, 1egf, 1epg, 1eph, 1epi, 1epj, 1eqg, 1eqp, 1eqh, 1eqh, 1esl, 1fe2, 1fjs, 1fsb, 1g1q, 1g1q, 1g1q, 1g1q, 1g1r, 1g1r, 1g1r, 1g1r, 1g1s, 1g1s, 1g1s, 1g1t, 1gk5, 1gl4, 1hae, 1haf, 1hcg, 1hre, 1hrf, 1ht5, 1ht5, 1ht8, 1ht8, 1igx, 1igz, 1ijq, 1ijq, 1iox, 1ip0, 1ivo, 1ivo, 1j9c, 1jbu, 1jl9, 1jl9, 1k36, 1k37, 1kig, 1kli, 1klj, 1kye, 1mox, 1mox, 1mq5, 1mq6, 1nql, 1p9j, 1pge, 1pge, 1pgf, 1pgg, 1pgg, 1prh, 1prh, 1pth, 1pth, 1pxx, 1pxx, 1pxx, 1qx4g, 1q4g, 1qfk, 1rfn, 1tpg, 1u67, 1v3x, 1w7x, 1w8b, 1xdt, 1xfe, 1ygc, 1yo8, 1yuf, 1yug, 1z1y, 1z27, 1z3g, 1z3g, 1z6e, 1zaq, 2adx, 2ayl, 2ayl, 2bmg, 2bok, 2bq6, 2bq7, 2bqw, 2bz6, 2d1j, 2ddu, 2e26, 2fzz, 2g00, 2gd4, 2gd4, 2gy5, 2gy7, 2i9a, 2i9a, 2i9a, 2i9a, 2i9b, 2i9b, 2i9b, 2oye, 2oyu, 2p16, 2p3f, 2p3t, 2p3u, 2p93, 2p94, 2p95, 2pe4, 2pr3, 2puq, 2q1j, 2ra0, 2tgf, 3egf, 3pgh, 3pgh, 3pgh, 3tgf, 4cox, 4cox, 4cox, 4cox, 4tgf, 5cox, 5cox, 5cox, 5cox, 6cox

Domain databases PFAM

Erik Sonnhammer/Ewan Birney/Alex Bateman http://pfam.xfam.org/

HOME | SEARCH | BROWSE | FTP | HELF

Pfam 35.0 (November 2021, 19632 entries)

The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). More...

QUICK LINKS YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS...

SEQUENCE SEARCH Analyze your protein sequence for Pfam matches

VIEW A PFAM ENTRY View Pfam annotation and alignments

VIEW A CLAN See groups of related entries

VIEW A SEQUENCE Look at the domain organisation of a protein sequence

VIEW A STRUCTURE Find the domains on a PDB structure

Sonnhammer et al (1997) Proteins

. . .

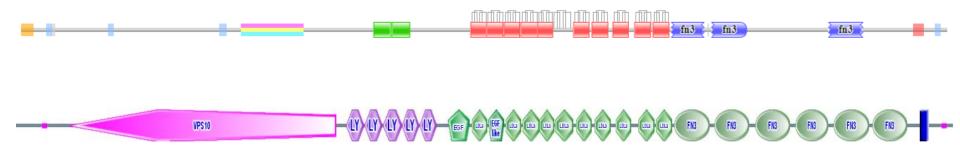
Mistry et al (2021) Nucleic Acids Research

Domain databases PFAM

This is the summary of UniProt entry SORL HUMAN 대 (Q92673 대).

Description: Sortilin-related receptor

Source organism: Homo sapiens (Human) (NCBI taxonomy ID 9606)


View Pfam proteome data.

Length: 2214 amino acids

Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. This snapshot of UniProt forms the basis of the overview that you see here. It is important to note that, although some UniProt entries may be removed after a Pfam release, these entries will not be removed from Pfam until the next Pfam data release.

Pfam domains

This image shows the arrangement of the Pfam domains that we found on this sequence. Clicking on a domain will take you to the page describing that Pfam entry. The table below gives the domain boundaries for each of the domains. More...

Domain databases CDD

Stephen Bryant

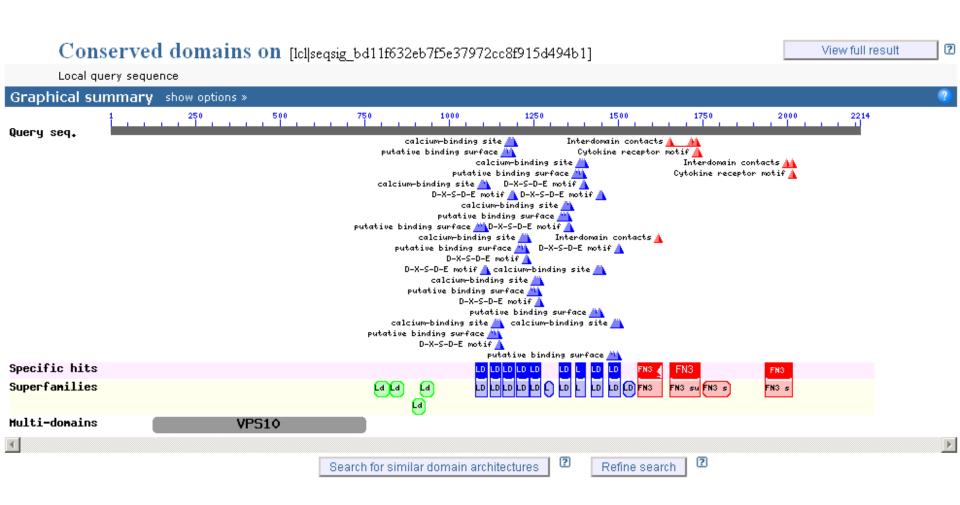
Submit

http://www.ncbi.nlm.nih.gov/cdd

Apply low-complexity filter 🛭 🗹

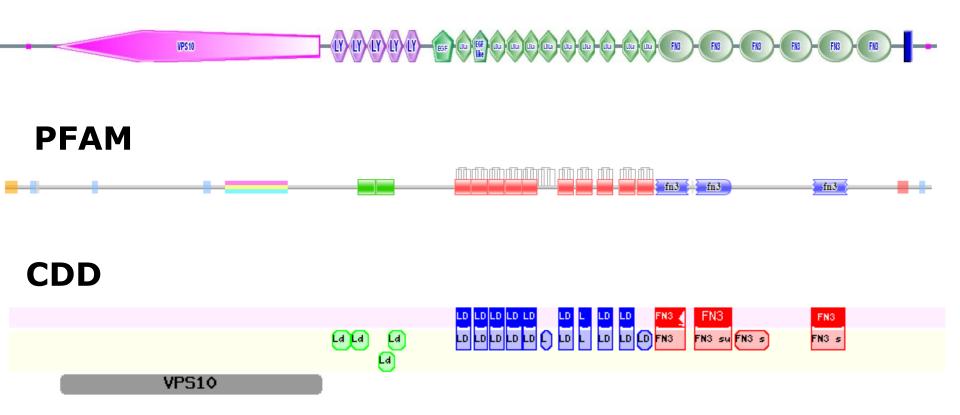
Maximum number of hits 2 250

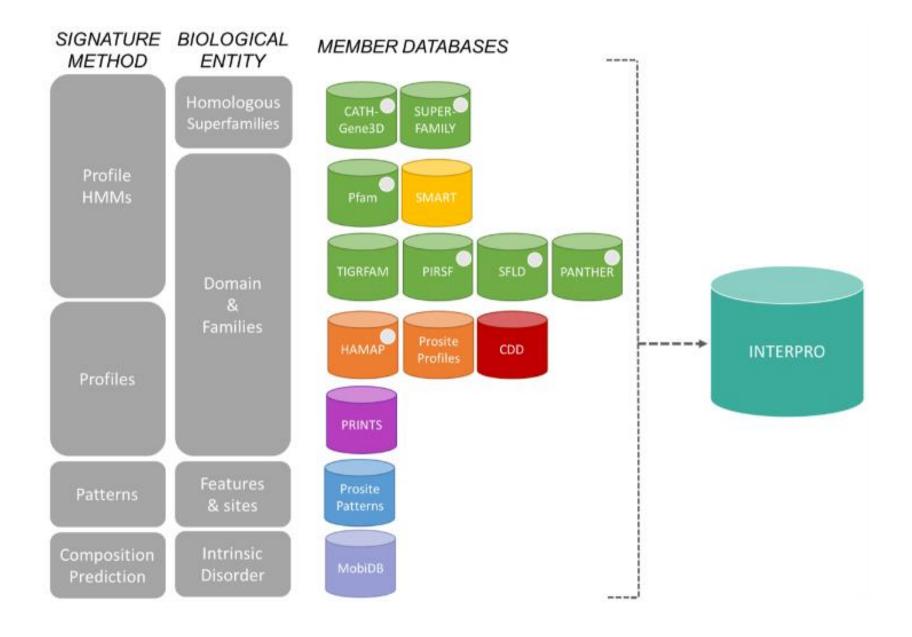
Result mode @Concise ? OFull ?


Force live search 2

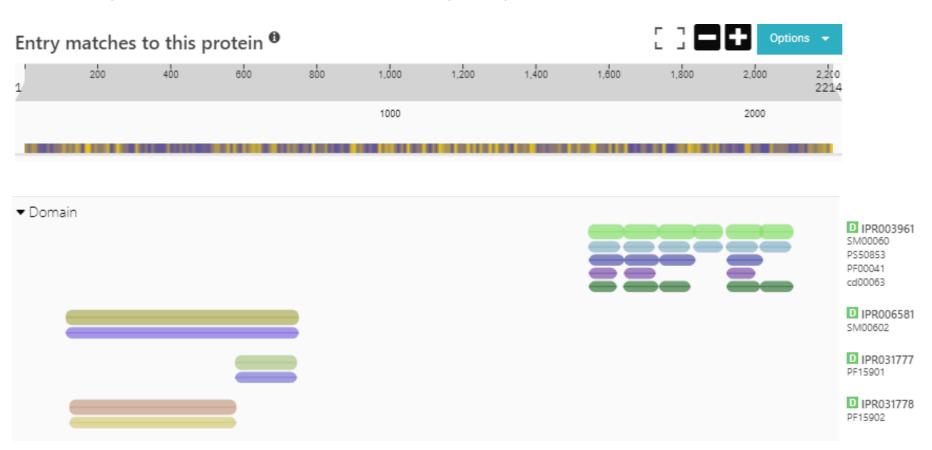
Marchler-Bauer et al (2015) Nucleic Acids Res

Reset

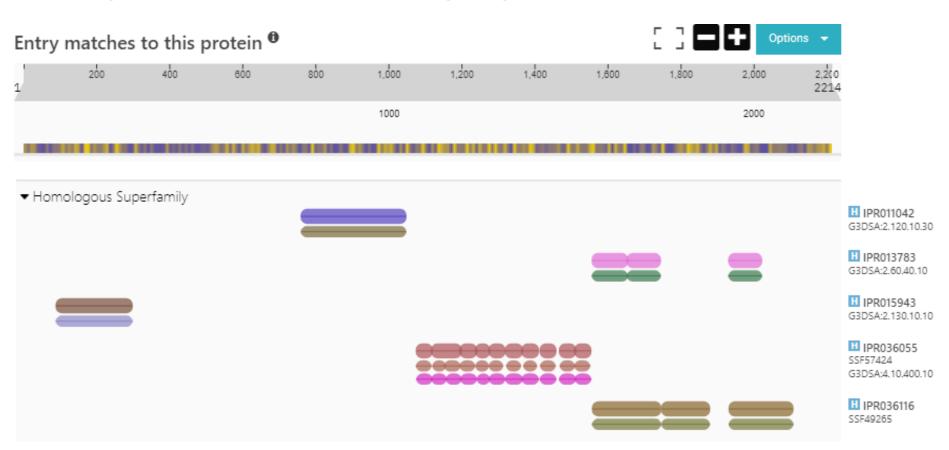

Domain databases CDD

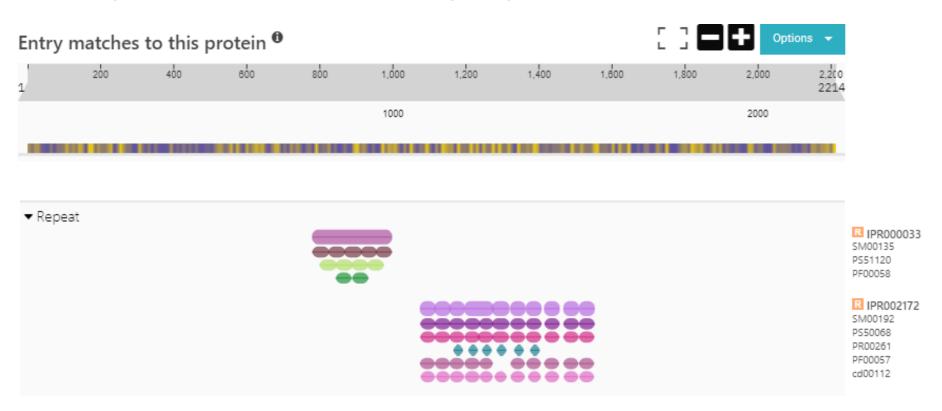


Domain databases

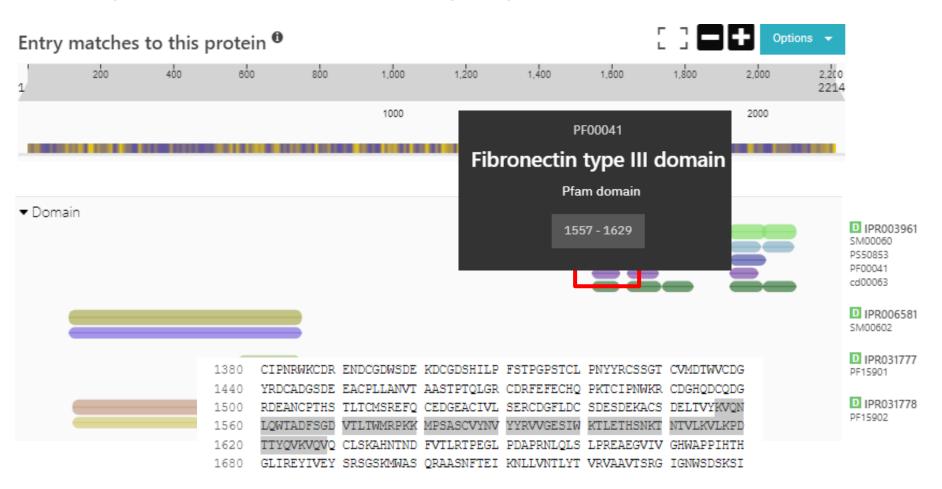

SORLA/SORL1 from Homo sapiens

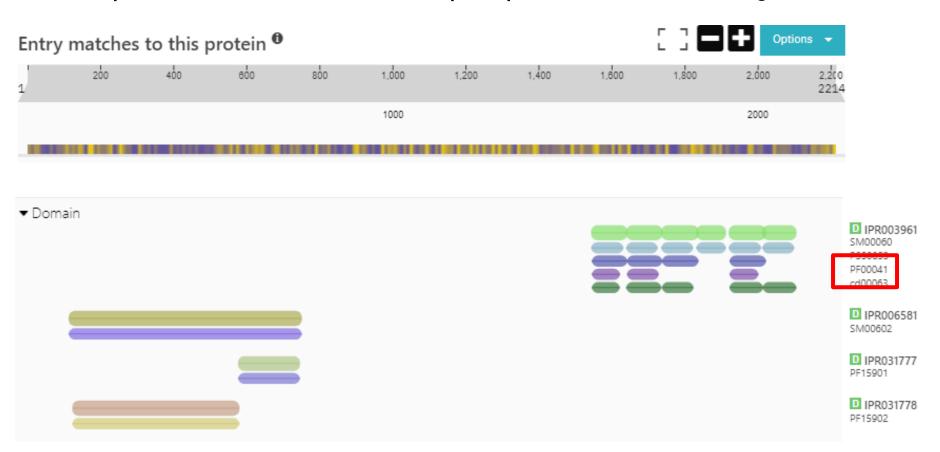
SMART




SORLA/SORL1 from *Homo sapiens*

SORLA/SORL1 from Homo sapiens


SORLA/SORL1 from Homo sapiens


SORLA/SORL1 from *Homo sapiens*

SORLA/SORL1 from Homo sapiens

SORLA/SORL1 from *Homo sapiens*

A / Browse / By Entry / Pfam / PF00041 / Overview

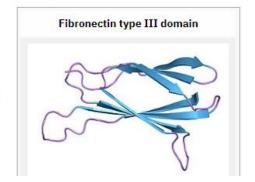
Pfom Fibronectin type III domain

	44
Overview	9
Proteins	251k
Domain Architectures	18k
Taxonomy	21k
Proteomes	5k
Structures	303
Signature	
AlphaFold	126k
Alignment	
Curation	

Member database	Pfam ⊕
Pfam type	Domain
Short name	fn3
Set	cl0159
Deferences	

Add your annotation • Integrated to > IPR003961

References

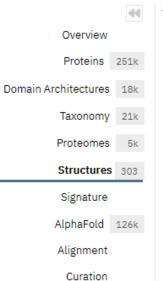

[1]. Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. Kornblihtt AR, Umezawa K, Vibe-Pedersen K, Baralle FE, EMBO J. 4, 1755-9, (1985), View article Z PMID: 2992939 12

[2]. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. Little E, Bork P, Doolittle RF. J. Mol. Evol. 39, 631-43, (1994). View article ☑ PMID: 7528812 2

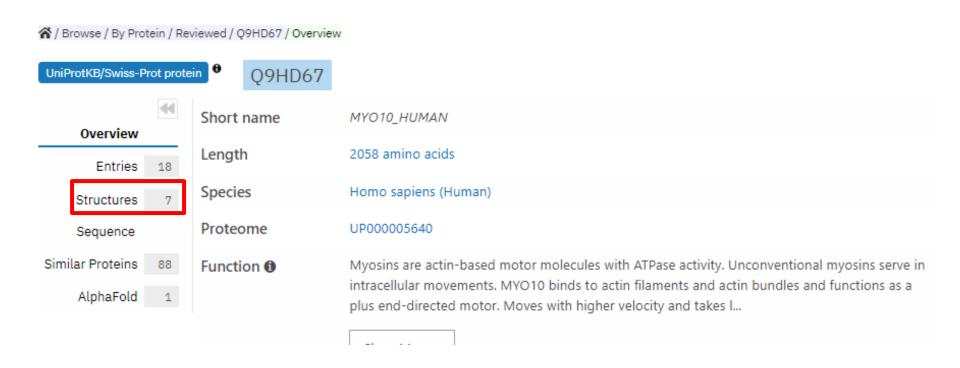
[3]. Structural design and molecular evolution of a cytokine receptor superfamily. Bazan JF. Proc. Natl. Acad. Sci. U.S.A. 87, 6934-8, (1990). View article Ø PMID: 2169613 2

Fibronectin type III domain Wikipedia

The Fibronectin type III domain is an evolutionarily conserved protein domain that is widely found in animal proteins. The fibronectin protein in which this domain was first identified contains 16 copies of this domain. The domain is about 100 amino acids long and possesses a beta sandwich structure. Of the three fibronectin-type domains, type III is the only one without disulfide bonding present. Fibronectin domains are found in a wide variety of extracellular proteins. They are widely distributed in animal species, but also found sporadically in yeast, plant and bacterial proteins.



Pfom Fibronectin type III domain PF00041



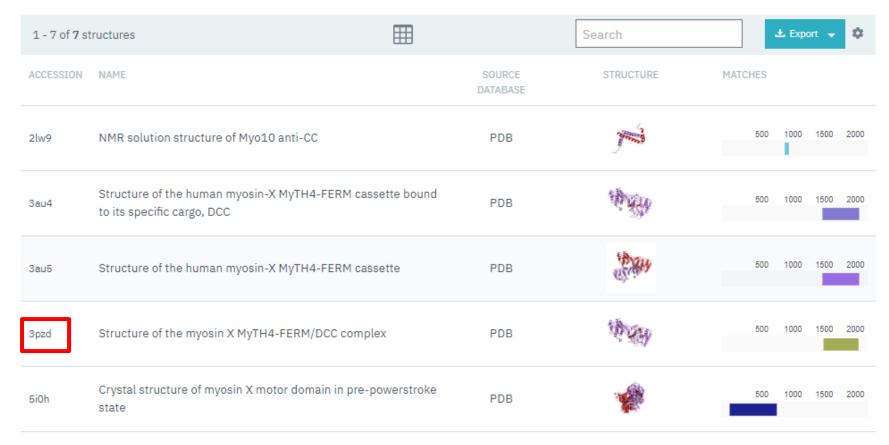
This entry matches these structures:

1 - 20 of 30	03 structures		Searc	ch	土日	Export 🔻	•
ACCESSION	NAME		SOURCE DATABASE	STRUCTURE	MATCHES		
1a22	HUMAN GROWTH HORMONE BOUND TO SING	GLE RECEPTOR	PDB	A	200	400	600
1axi	STRUCTURAL PLASTICITY AT THE HGH:HGHE	BP INTERFACE	PDB		200	400	600
1bj8	THIRD N-TERMINAL DOMAIN OF GP130, NMI STRUCTURE	R, MINIMIZED AVERAGE	PDB	菱	200 400	0 600	800
1bpv	TITIN MODULE A71 FROM HUMAN CARDIAC STRUCTURES	MUSCLE, NMR, 50	PDB	₹ <u>\$</u> .	10000	20000 :	30000
1bqu	CYTOKYNE-BINDING REGION OF GP130		PDB	**************************************	200 400	0 600	800

Exercise 1Find structures in PDB for human myosin X

Find this sequence in InterPro. https://www.ebi.ac.uk/interpro/protein/reviewed/Q9HD67/

Exercise 1Find structures in PDB for human myosin X

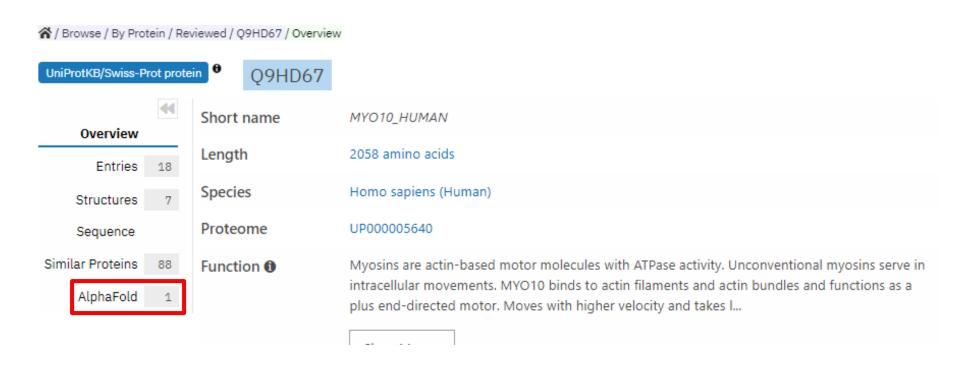

 Which domains of myosin X are covered by the solved structures?

• Is there a part of the protein for which there are no know structures? Does it have predicted domains?

Exercise 2Analyse domain predictions

Slide down to see the details of the structures.

This protein matches these structures:


Exercise 2Analyse domain predictions

Examine the structure of 3pzd
 How do the domain predictions fit the structure?

• Chain B in this structure is a small peptide. Which domain in Myosin X is interacting with this peptide?

Exercise 3AlphaFold prediction

There is a predicted structure

Exercise 3AlphaFold prediction

- There is a predicted structure
- Download the PDB file and load it in Chimera
- Select the central region without PDB information (Select/Atom specifier), inverse the selection, and delete everything else (Actions/Atoms/Delete). Describe the structure predicted for this region and how this could affect structure determination.
- Examine the PH domains. How many domains do you see? Is there anything particular about them?

Exercise 3AlphaFold prediction

