Master Biomedizin 2022

UniProt
 Homology
 MSA
 Phylogeny

- **a.** What is the AC of the UniProt entry for the human insulin?
- **b.** How many isoforms for this protein are described in that entry?
- **c.** How many times has this entry been modified? ... and the protein sequence?
- d. With how many proteins does the human insulin interact?

a. What is the AC of the UniProt entry for the human insulin? P01308

P01308 · INS_HUMAN

- a. What is the AC of the UniProt entry for the human insulin? P01308
- b. How many isoforms for this protein are described in that entry? 2 isoforms

- a. What is the AC of the UniProt entry for the human insulin? P01308
- b. How many isoforms for this protein are described in that entry? 2 isoforms
- **c.** How many times has this entry been modified? 265 times; currently in version 266 ... and the protein sequence? None; currently in version 1

ntry Feature	e viewer Publication	ons External links	History		
Entry his	tory				
ompare 🛃 Do	wnload				
Entry version	Sequence version	Entry name	Database	Release numbers (Swiss-Prot/TrEMBL)	Release date
266 (txt)	1 (fasta)	INS_HUMAN	Swiss-Prot	2022_04/2022_04	12-Oct-2022
265 (txt)	1 (fasta)	INS_HUMAN	Swiss-Prot	2022_03/2022_03	03-Aug-2022
264 (txt)	1 (fasta)	INS_HUMAN	Swiss-Prot	2022_02/2022_02	25-May-2022
263 (txt)	1 (fasta)	INS_HUMAN	Swiss-Prot	2022_01/2022_01	23-Feb-2022
262 (txt)	1 (fasta)	INS_HUMAN	Swiss-Prot	2021_04/2021_04	29-Sep-2021

- a. What is the AC of the UniProt entry for the human insulin? P01308
- b. How many isoforms for this protein are described in that entry? 2 isoforms
- **c.** How many times has this entry been modified? 265 times; currently in version 266 ... and the protein sequence? None; currently in version 1
- **d.** With how many proteins does the human insulin interact? 524 interactors (BioGRID), 20 interactors (IntAct); databases do not always agree

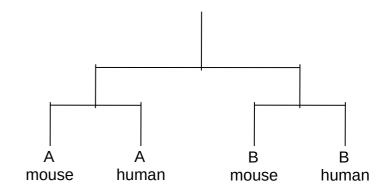
Protein-protein interaction databases

Nov 2022	BioGRID	109842 🖸 524 interactors
	DIP	DIP-6024N 🗗
	IntAct	P01308 2 20 interactors

Feb 2022

Protein-protein interaction databases

BioGRID ¹	109842, 487 interactors
DIP ⁱ	DIP-6024N
IntAct ¹	P01308, 18 interactors
MINT ⁱ	P01308
STRING ¹	9606.ENSP00000380432


Feb 2021

Protein-protein Interaction databases

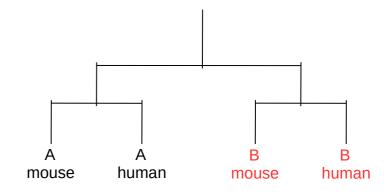
BioGRID ¹	109842, 24 interactors
DIP ¹	DIP-6024N
IntAct ⁱ	P01308, 18 interactors
MINT ¹	P01308
STRING ⁱ	9606.ENSP00000380432

Classify the following protein pairs based on their evolutionary relationship. Note: proteins A and B have a common ancestor.

- a. Protein A mouse / Protein A human
- b. Protein A mouse / Protein B mouse
- c. Protein A mouse / Protein B human
- d. Protein A human / Protein B mouse
- e. Protein A human / Protein B human
- f. Protein B mouse / Protein B human

Classify the following protein pairs based on their evolutionary relationship. Note: proteins A and B have a common ancestor.

a. Protein A mouse / Protein A human \rightarrow Orthologs


b. Protein A mouse / Protein B mouse -> Paralogs

c. Protein A mouse / Protein B human \rightarrow Homologs

d. Protein A human / Protein B mouse → Homologs

e. Protein A human / Protein B human \rightarrow Paralogs

f. Protein B mouse / Protein B human \rightarrow Orthologs

a. Using the human protein "P21741", find its orthologous proteins in frog (*Xenopus laevis*) and get their UniProt AC.

b. Check the identity between the orthologs (human – frog proteins).

c. Check the identity between the paralogs (frog – frog proteins).

Human (Homo sapiens)

Frog (Xenopus laevis)

Homology

BLAST		
Find a protein sequence to run BLAST sequence similarity search by UniPr	ot ID (e.g. P05067 or A4_HUMAN or UP10000000001).	
UniProt IDs	۹	a Quant D21741
OR		a. Query: P21741. Ortholog1: P48530.
Enter one or more sequences (20 max). You may also load from a text file.		Ortholog2: P48531.
>sp P21741 MK_HUMAN Midkine OS=Homo sapiens 0X=9606 (MQHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPS CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLK RVTKPCTPKT KAKAKAKKGK GKD	SK DCGVGFREGT	
O Your input contains 1 sequence		
Target database	Restrict by taxonomy	
UniProtKB Swiss-Prot *	xenopus laevis X	
	Xenopus laevis (Clawed frog/African clawed frog/X	

	Entry		Entry Name	Protein Names	Gene Names	Organism	Length		20	40	бÖ	80	100	120	140
C	P48530	a	MKA_XENLA	Midkine-A[]	mdk-a	Xenopus laevis (African clawed frog)	142 AA	×					61.1%	201.06	1.6e-68
C	P48531	a	MKB_XENLA	Midkine-B[]	mdk-b	Xenopus laevis (African clawed frog)	142 AA						60.4%	200.675	2.3e-68

Homology

BLAST		
Find a protein sequence to run BLAST sequence similarity search by UniProt	ID (e.g. P05067 or A4_HUMAN or UPI0000000001).	
UniProt IDs OR Enter one or more sequences (20 max). You may also load from a text file.	۹	a. Query: P21741. Ortholog1: P48530. Ortholog2: P48531.
>sp P21741 MK_HUMAN Midkine OS=Homo sapiens OX=9606 GN MQHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPSSK CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RVTKPCTPKT KAKAKAKKGK GKD	DCGVGFREGT	b. P21741-P48530 = 61.1% P21741-P48531 = 60.4%
Your input contains 1 sequence		
Target database	Restrict by taxonomy	
UniProtKB Swiss-Prot *	xenopus laevis ×	
	Xenopus laevis (Clawed frog/African clawed frog/X	

	Entry		Entry Name	Protein Names	Gene Names	Organism	Length	20	40	60	80	100	120	140
C) P48530	a	MKA_XENLA	Midkine-A[]	mdk-a	Xenopus laevis (African clawed frog)	142 AA					61.1%	201.06	1.6e-68
0	P48531	5	MKB_XENLA	Midkine-B[]	mdk-b	Xenopus laevis (African clawed frog)	142 AA					60.4%	200.675	2.3e-68

BLAST

Find a protein sequence to run BLAST sequence similarity search by UniProt ID (e.g. P05067 or A4_HUMAN or UPI0000000001).

OP.	
UniProt IDs	c

Enter one or more sequences (20 max). You may also load from a text file.

>sp|P48530|MKA_XENLA Midkine-A OS=Xenopus laevis 0X=8355 GN=mdk-a PE=2 SV=1 MELRAFCVIL LITVLAVSSQ AAKNKKEKGK KGASDCTEWT WGSCIPNSKD CGAGTREGTC KEETRKLKCK IPCNWKKAFG ADCKYKFENW GECNATTGQK VRSGTLKKAL YNADCQQTVE ATKPCSLKTK SKSKGKKGKG KE

(i) Your input contains 1 sequence	
Target database	Restrict by taxonomy
UniProtKB Swiss-Prot	xenopus laevis X
	Xenopus laevis (Clawed frog/African clawed frog/X

- **a.** Query: P21741. Ortholog1: P48530. Ortholog2: P48531.
- **b.** P21741-P48530 = 61.1% P21741-P48531 = 60.4%
- c. P48530-P48531 = 97.9% Note: may also be done with "alignments".

Entry		Entry Name	Protein Names	Gene Names	Organism	Length	10	20	30	40	50	60	70	80	90	100	110			140
P48530	a	MKA_XENLA	Midkine-A[]	mdk-a	Xenopus laevis (African clawed frog)	142 AA										100%	30	3.523	(4.3e	-109)
P48531	5	MKB_XENLA	Midkine-B[]	mdk-b	Xenopus laevis (African clawed frog)	142 AA										97.99	29	8.901)	2.9e	-107)

a. Based on the sequence of the "ATP synthase subunit a" protein from the extinct mammoth (*Mammuthus primigenius*), was the mammoth closer to the asian elephant (*Elephas maximus*) or to the african elefant (*Loxodonta africana*)? Use only SwissProt proteins.

b. Is there evidence enough to conclude if they are / are not closer?

c. Could you check with the "cytochrome b" protein too? Use only SwissProt proteins.

Woolly mammoth (*Mammuthus primigenius*)

Asian elephant (*Elephas maximus*)

African elephant (*Loxodonta africana*)

a. *M. primigenius* (Q38PR7) – *E. maximus* (Q2I3G9) = 95.5% *M. primigenius* (Q38PR7) – *L. africana* (Q9TA24) = 93.2%

BLAST Find a protein sequence to run BLAST sequence similarity search by UniProt ID (e.g. P05067 or A4_HUMAN or UPI0000000001). Q OR Enter one or more sequences (20 max). You may also load from a text file. >sp|Q38PR7|ATP6_MAMPR ATP synthase subunit a OS=Mammuthus primigenius OX=37349 GN=MT-ATP6 PE=3 SV=1 MNEELSAFFD VPVGTMMLAI AFPAILLPTP NRLITNRWIT IQQWLVKLIM KQLLSIHNTK GLSWSLMLIT LTLFIGLTNL LGLLPYSFAP TAQLTVNLSM AIPLWTGTVI LGFRYKTKIS LAHLLPQGTP TFLIPMIIII ETISLLIRPV TLAVRLTANI TAGHLLIHLT GTAALTLLSI HSMTITVTFI TVVVLTILEL AVALIQAYVF ALLISLYLHE SA Your input contains 1 sequence Target database Restrict by taxonomy Loxodonta africana [9785] × UniProtKB Swiss-Prot Ŧ Q Elephas maximus [9783] ×

•	Entry		Entry Name	Protein Names	Gene Names	Organism	Length		20	40	60	80	100	120	140	160	180	200	220
0	Q2I3G9	3	ATP6_ELEMA	ATP synthase subunit a []	MT-ATP6 , ATP6, ATPASE6, MTATP6	Elephas maximus (Indian elephant)	222 AA									95.5%	413.6	9 5.2e	-152
	Q9TA24	8	ATP6_LOXAF	ATP synthase subunit a[]	MT-ATP6 , ATP6, ATPASE6, MTATP6	Loxodonta africana (African elephant)	222 AA	-								93.2%	402.51	9 1.4e	-147

BLAST

Find a protein sequence to run BLAST sequence similarity search by UniProt ID (e.g. P05067 or A4_HUMAN or UPI000000001).

UniPro				c	2
--------	--	--	--	---	---

OR

Enter one or more sequences (20 max). You may also load from a text file.

>sp Q38PR7 ATP6_MAMPR ATP synthase subunit a OS=Mammu MNEELSAFFD VPVGTMMLAI AFPAILLPTP NRLITNRWIT IQQWLVKLI GLSWSLMLIT LTLFIGLTNL LGLLPYSFAP TAQLTVNLSM AIPLWTGTV LAHLLPOGTP TFLIPMIIII ETISLLIRPV TLAVRLTANI TAGHLLIHL	M KQLLSIHNTK I LGFRYKTKIS
HSMTITVTFI TVVVLTILEL AVALIQAYVF ALLISLYLHE SA	
(i) Your input contains 1 sequence	
Target database	Restrict by taxonomy
UniProtKB Swiss-Prot	Enter taxon names or IDs to include Q (Loxodonta africana [9785] × Elephas maximus [9783] ×)

a. *M. primigenius* (Q38PR7) – *E. maximus* (Q2I3G9) = 95.5% *M. primigenius* (Q38PR7) – *L. africana* (Q9TA24) = 93.2%

b. Just this sequence similarity is not evidence enough for claiming the mammoth is closer to the asian elephant than to the african elephant,

BUT

the last genome sequencing work on the woolly mammoth (PMID: 19020620), in 2008, provides evidence enough to determine that it is really closer to the asian elephant.

•	Entry		Entry Name	Protein Names	Gene Names	Organism	Length		20	40	60	80	100	120	140	160	180	200	220
	Q2I3G9	8	ATP6_ELEMA	ATP synthase subunit a[]	MT-ATP6 , ATP6, ATPASE6, MTATP6	Elephas maximus (Indian elephant)	222 AA									95.5%	413.6	7 5.2e	-152)
	Q9TA24	•	ATP6_LOXAF	ATP synthase subunit a []	MT-ATP6 , ATP6, ATPASE6, MTATP6	Loxodonta africana (African elephant)	222 AA	-								93.2%	402.51	7] [1.4e	-147

BLAST

Find a protein sequence to run BLAST sequence similarity search by UniProt ID (e.g. P05067 or A4_HUMAN or UPI0000000001).

UniP

OR

Enter one or more sequences (20 max). You may also load from a text file.

>sp P92658 CYB_MAMPR Cytochrome b OS=Mammu MTHIRKSHPL LKILNKSFID LPTPSNISTW WNFGSLLGA TAFSSMSHIC RDVNYGWIIR QLHSNGASIF FLCLYTHIG LITMATAFMG YVLPWGQMSF WGATVITNLF SAIPYIGTD LHFILPFTMI ALAGVHLTFL HETGSNNPLG LTSDSDKIP LLALLSPDML GDPDNYMPAD PLNTPLHIKP EWYFLFAYA LGIMPLLHTS KHRSMMLRPL SQVLFWTLAT DLLMLTWIG	C LITQILTGL R NIYYGSYLY L VEWIWGGFS F HPYYTIKDF I LRSVPNKLG	F LAMHYTPDTM YS ETWNTGIMLL SV DKATLNRFFA FL GLLILILFLL 3G VLALLLSILI	M. pr. M. pr. M. pr.
IILAFLPIAG MIENYLIK ① Your input contains 1 sequence			ļā.
Target database		Restrict by taxonomy	
UniProtKB Swiss-Prot	*	Enter taxon names or IDs to include	Q (Loxodonta africana [9785] × (Elephas maximus [9783] ×)

a. *M. primigenius* (Q38PR7) – *E. maximus* (Q2I3G9) = 95.5% *M. primigenius* (Q38PR7) – *L. africana* (Q9TA24) = 93.2%

b. Just this sequence similarity is not evidence enough for claiming the mammoth is closer to the asian elephant than to the african elephant,

BUT

the last genome sequencing work on the woolly mammoth (PMID: 19020620), in 2008, provides evidence enough to determine that it is really closer to the asian elephant.

- **c.** Different results! (read "b" again...)
 - *M. primigenius* (P92658) *E. maximus* (O47885) = 96.3% *M. primigenius* (P92658) – *L. africana* (P24958) = 97.9%

Entry	Entry Name	Protein Names	Gene Names	Organism	Length	 50	100	150	200	250	300	350
🗆 P24958 🏻 🎝	CYB_LOXAF	Cytochrome b[]	МТ-СҮВ , СОВ, СҮТВ, МТСҮВ	Loxodonta africana (African elephant)	378 AA						97.9%	762.296]_[0]
O47885 🍋	CYB_ELEMA	Cytochrome b[]	МТ-СҮВ , СОВ, СҮТВ, МТСҮВ	Elephas maximus (Indian elephant)	378 AA						96.3%	752.666]_[0]

Q

a. The UniProt entry "P04585" contains the Gag-Pol polyprotein from the virus HV1H2. Do you think it would resemble any protein in the human proteome (*Homo sapiens*)?

b. The Gag-Pol polyprotein is composed of more than one protein. Can you identify them? Use only SwissProt proteins.

a. The UniProt entry "P04585" contains the Gag-Pol polyprotein from the virus HV1H2. Do you think it would resemble any protein in the human proteome (*Homo sapiens*)? Many retroviral proteins integrated in the human genome.

b. The Gag-Pol polyprotein is composed of more than one protein. Can you identify them? Use only SwissProt proteins.

a. The UniProt entry "P04585" contains the Gag-Pol polyprotein from the virus HV1H2. Do you think it would resemble any protein in the human proteome (*Homo sapiens*)?

Many retroviral proteins integrated in the human genome.

b. The Gag-Pol polyprotein is composed of more than one protein. Can you identify them? Use only SwissProt proteins.

BLAST	
Find a protein sequence to run BLAST sequence similarity search by UniProt ID (e.g. P	205067 or A4_HUMAN or UPI0000000001).
UniProt IDs	۹
OR	
Enter one or more sequences (20 max). You may also load from a text file.	
>sp P04585 POL_HV1H2 Gag-Pol polyprotein OS=Human immunodefic MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL LETSEG LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA LDKIEEEQNK SKKKAQ DTGHSNQVSQ NYPIVQNIQG QMVHQAISPR TLNAWVKVVE EKAFSPEVIP MFSALS PQDLNTMLNT VGGHQAAMQM LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDI	GCRQI QQAAA SEGAT
Target database Restrict b	by taxonomy
UniProtKB Swiss-Prot	sapiens ×
Homo s:	apiens (Human/Man) [9606]

a. The UniProt entry "P04585" contains the Gag-Pol polyprotein from the virus HV1H2. Do you think it would resemble any protein in the human proteome (*Homo sapiens*)? Many retroviral proteins integrated in the human genome.

b. The Gag-Pol polyprotein is composed of more than one protein. Can you identify them? Use only SwissProt proteins.

							Entry	1	Entry Name	Protein Names	Gene Names	Organism	Length	200	400	eoo	800	1,000	1,200	1,400
О Q9HDB9	GAK5_HUMAN	retrovirus group K member 5 Gag polyprotein[]	ERVK-5, ERVK5	Homo sapiens (Human)	667 AA	 32.5% (83.9593) 3e-16 22.1% (83.1889) 5e-16	P63133	a	POK8_HUMAN	Endogenous retrovirus group K member 8 Pol protein[]	ERVK-8	Homo sapiens (Human)	956 AA					26.4%	[<u>251.136</u>] [1	7.8e-69
P62685	GAK8_HUMAN	Endogenous retrovirus group K member 8 Gag polyprotein[]	ERVK-8	Homo sapiens (Human)	647 AA		P63135	a	POK7_HUMAN	Endogenous retrovirus group K member 7 Pol	ERVK-7	Homo sapiens (Human)	1,459 AA	- <u>19-</u>		_	_	26.3%	(253.447)	<u>3.4e-68</u>
P63126	GAK9_HUMAN	Endogenous retrovirus group K member 9 Gag polyprotein[]	ERVK-9	Homo sapiens (Human)	666 AA	 291% 831889 528-16		a	POK11_HUMAN	protein[] Endogenous retrovirus group K member 11 Pol	ERVK-11	Homo sapiens (Human)	969 AA					26%	249.595	3.6e-68
P63130	SAK7_HUMAN	Endogenous retrovirus group K member 7 Gag polyprotein[]	ERVK-7	Homo sapiens (Human)	666 AA	 291% 831889 52e-16	P63132	a	PO113_HUMAN	protein[] Endogenous retrovirus group K	HERVK_113	Homo	956 AA			_		26.5%	248.054	<u>(1e-67</u>)
P63145	GAK24_HUMAN	Endogenous retrovirus group K member 24 Gag polyprotein[]	ERVK-24	Homo sapiens (Human)	666 AA	 291% 83.1889 5.2e-16	P63136		POK25_HUMAN	member 113 Pol protein[] Endogenous	ERVK-25	(Human) Homo	954					26%	(246.899) (2	2.3e-67
P62684	SGA113_HUMAN	Endogenous retrovirus group K member 113 Gag polyprotein[]	HERVK_113	Homo sapiens (Human)	666 AA	29.1% (82.4185) (9e-16)				retrovirus group K member 25 Pol protein[]		sapiens (Human)	AA							
P87889	SAK10_HUMAN		ERVK-10	Homo sapiens (Human)	666 AA	 29.1% (81.6481) (1.6e-15)	Q9BXR3	a	POK6_HUMAN	Endogenous retrovirus group K member 6 Pol protein[]	ERVK-6, ERVK6	Homo sapiens (Human)	956 AA						246.899	_
							P10266	a	POK10_HUMAN	Endogenous retrovirus group K member 10 Pol protein[]	ERVK-10	Homo sapiens (Human)	1,014 AA			_		25.9%	247.284	3.3e-67

N-terminal → Gag

C-terminal → Pol

Given the following alignments,

classify them in:

- Pairwise / multiple
- Local / global

calculate their:

a)

- % similarity
- % identity

Protein_AYYWWb)Protein_AProtein_BYYWWProtein_B********

KKKYYWWKKT AKKYYWW---***** c) Protein_A

>Protein A

KKKYYWWKKT

>Protein_B AKKYYWW

>Protein_C RKRWWWRT

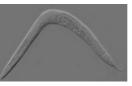
> Protein_B Protein C

KKKYYWWKKT AKKYYWW---AKRWWWR-T *:::**

Given the following a	lignments,				
classify them in: – Pairwise / m – Local / globa	•		KKKY) >Prot AKKY)	tein_A YWWKKT tein_B YWW tein_C	
calculate their: – % similarity – % identity			RKRW	WWRT	
a) Protein_A Protein_B	YYWW YYWW ****	b) Protein_A Protein_B	KKKYYWWKKT AKKYYWW *****	C) Protein Protein Protein	B AKKYYWW
Pairwise Local 100% similarity 100% identity	ý	Pairwise Global 60% similar 60% identit		Multipl Global 60% si 30% ic	imilarity

a. Both "P17861" (XBP1_HUMAN) and "Q3SZZ2" (XBP1_BOVIN) are "X-box binding protein 1" proteins. Can you detect which region/s of these proteins is/are important for their function? Why? Use Clustal Omega. What should you do to detect them?

b. Add the proteins "G5EE07" (G5EE07_CAEEL) and "Q8UVQ5" (Q8UVQ5_DANRE) to the study. Are you able to identify that region/s now? Why? Use Clustal Omega.


c. Check the positional annotations in the entry of the human protein. Was the region you identified annotated as a domain?

Human (Homo sapiens)

Cattle (Bos taurus)

(Caenorhabditis elegans)

Worm

Zebra fish (*Danio rerio*)

sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	MVVVAAAPNPADGTPKVLLLSGQPASAAGAPAGQALPLMVPAQRGASPEAASGGLPQARK MVVVAPAQSPAAGAPKVLLLSGQPAATGGAPAGRALPVMVPGQQGASPEGASGVPPQARK ***** ************************************	60 60
sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	RQRLTHLSPEEKALRRKLKNRVAAQTARDRKKARMSELEQQVVDLEEENQKLLLENQLLR RQRLTHLSPEEKALRRKLKNRVAAQTARDRKKARMSELEQQVVDLEEENQKLLLENQLLR ***********************************	120 120
sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	EKTHGLVVENQELRQRLGMDALVAEEEAEAKGNEVRPVAGSAESAALRLRAPLQQVQAQL EKTHGLVVENQELRQRLGMDALVTEEEAETKGNGAGLVAGSAESAALRLRAPLQQVQAQL ***********************************	180 180
sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	SPLQNISPWILAVLTLQIQSLISCWAFWTTWTQSCSSNALPQSLPAWRSSQRSTQKDPVP SPLQNISPWTLMALTLQTLSLTSCWAFCSTWTQSCSSDVLPQSLPAWSSSQKWTQKDPVP ******** * .**** ** ***** :************	240 240
sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	YQPPFLCQWGRHQPSWKPLMN 261 YRPPLLHPWGRHQPSWKPLMN 261 * *** * ***********	

a. No. They are too similar. We would need a protein from a more distant organism.

7	sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	MVVVAAAPNPADGTPKVLLLSGQPASAA MVVVAPAQSPAAGAPKVLLLSGQPAATG ***** * .** *:****************	GAPAGRALPVMVPGQQGASPEGASGVF	PPQARK	60 60		
	sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	RQRLTHLSPEEKALRRKLKNRVAAQTAR RQRLTHLSPEEKALRRKLKNRVAAQTAR ************************************			120 120	a. No. They are too similar. We would protein from a more distant organism.	need a
	sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	EKTHGLVVENQELRQRLGMDALVAEEEA EKTHGLVVENQELRQRLGMDALVTEEEA **********************************	ETKGNGAGLVAGSAESAALRLRAPLQ	QVQAQL	180 180		
	sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	SPLQNISPWILAVLTLQIQSLISCWAFW SPLQNISPWTLMALTLQTLSLTSCWAFC ********** * *****	STWTQSCSSDVLPQSLPAWSSSQKWTQ	KDPVP	240 240		
	sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	YQPPFLCQWGRHQPSWKPLMN 261 YRPPLLHPWGRHQPSWKPLMN 261 *:*** ** ***********					
		Υ.**Υ.* *****	tr G5EE07 G5EE07_CAEEL tr Q8UVQ5 Q8UVQ5_DANRE sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	MVVV MVVV	T AGTGGA AAAPNPADGT	PKRIYVLPARHVAAPQPQRMAPKRALPTEQVVAQLLGDDMGPS HKVL-LISGKQSASTGAAQGGYSRSISVMIPNQASSDSDSTTSG-P PKVL-LLSGQPASAAGAPAGQALPLMVPAQRGASPEAASGGLP PKVL-LLSGQPAATGGAPAGRALPVMVPGQQGASPEGASGVPP *::::::*::	47 55 56 56
b. Yes. T	They are not as similar.		tr G5EE07 G5EE07_CAEEL tr Q8UVQ5 Q8UVQ5_DANRE sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	PLRKI QARKI OARKI	RQRLTHLSPE RQRLTHLSPE RORLTHLSPE	EKMDRRKLKNRVAAQNARDKKKERSAKIEDVMRDLVEENRRLRAEN EKALRKLKNRVAAQTARDRKKAKMGELEQQVLELELENQKLHVEN EKALRKLKNRVAAQTARDRKKARMSELEQQVVDLEEENQKLLLEN EKALRRKLKNRVAAQTARDRKKARMSELEQQVVDLEEENQKLLLEN	107 115 116 116
			tr G5EE07 G5EE07_CAEEL tr Q8UVQ5 Q8UVQ5_DANRE sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN		DKTSDLLSEN EKTHGLVVEN EKTHGLVVEN	NESVMYMEENNENLMNSNDACIYQNVVYEEEVVGEVAPVVVVGGED BELRQRLGLDTLETKEQVQVLESAVSDLGLVTGSSE QELMQRLGMDALVAEEEAEAKGNEVRPVAGSAE QELMQRLGMDALVTEEEAETKGNGAGLVAGSAE :* : :* .::. *.*.	167 165 163 163
			tr G5EE07 G5EE07_CAEEL tr Q8UVQ5 Q8UVQ5_DANRE sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	SAAL	RLRVPP RLRAPL RLRAPL	QWEQARSTSINNNISNQLRRMDSKKNNTISVDMYLTIISILCNHMD QQVQAQQSPNLKTSPWILTALALQTLSLISCLVFWTSLTPSSSSRQ QQVQAQLSPLQNISPWILAVLTLQIQSLISCWAFWTTWTQSCSSNA QQVQAQLSPLQNISPWTLMALTLQTLSLTSCWAFCSTWTQSCSSDV * **: : : : * : : . * : :	227 221 219 219
			tr G5EE07 G5EE07_CAEEL tr Q8UVQ5 Q8UVQ5_DANRE sp P17861 XBP1_HUMAN sp Q3SZZ2 XBP1_BOVIN	TFLKI LPQSI LPQSI	HRSLSRSSCW LPAWRSSQRS LPAWSSSQKW	SRAQAESSIDSLLATLRKEQTVMQRLVQADPCTHLQKRVKHFRRIP WGVQESKYLPPHLQLWGPHQLSWKPLMN	287 263 261 261

7 sp P17861 XBP1_HUI sp Q3SZZ2 XBP1_BOX sp P17861 XBP1_HUI sp Q3SZZ2 XBP1_BOX	VIN	MVVVAAAPNPADG MVVVAPAQSPAAG ***** * ** * RQRLTHLSPEEKA RQRLTHLSPEEKA ******	APKVLLLSGO :********** LRRKLKNRVA	PAATGGAF **::.*** AQTARDRH	AGRALPVI	MVPGQQGAS ***.*:*** EQQVVDLEE	ENQKLLLE	POARK 6	0						We wo ganism	uld nee	ed a
sp P17861 XBP1_HU sp Q3SZZ2 XBP1_B0		EKTHGLVVENQEL EKTHGLVVENQEL *****	RORLGMDALV	TEEEAET	GNGAGLV	AGSAESAAL	RLRAPLO	VQAQL 1	80 80								
sp P17861 XBP1_HU sp Q3SZZ2 XBP1_B0		SPLONISPWILAV SPLONISPWTLMA *******	LTLQTLSLTS	CWAFCSTV	TQSCSSD	VLPQSLPAW	SSSQKWTO	KDPVP 2	40 40								
sp P17861 XBP1_HU sp Q3SZZ2 XBP1_BO b. Yes. They are not as s	VIN	YQPPFLCQWGRHQ YRPPLLHPWGRHQ *:**:* ****	PSWKPLMN 2	61 t sı sı t t	r Q8UVQ5 p P17861 p Q3SZZ2 r G5EE07 r Q8UVQ5 p P17861	G5EE07_C Q8UVQ5_C XBP1_HUM XBP1_BOV G5EE07_C Q8UVQ5_C XBP1_HUM XBP1_BOV	ANRE IAN (IN CAEEL DANRE IAN	MVVVT- MVVVAA MVVVAP GPRKRE PLRKRQ QARKRQ	MSNYF AGTGGAF APNPADGTF AQSPAAGAF RLNHLSGEE RLTHLSFEE RLTHLSFEE RLTHLSFEE	KVL-LIS PKVL-LLS PKVL-LLS * : :: KMDRRKL KALRRKL KALRRKL	GKQSAST(GQPASAA(GQPAATG(.: :: KNRVAAQ KNRVAAQ KNRVAAQ KNRVAAQ	SAAQGGYSI SAPAG (SAPAG 1 VARDKKKEI FARDRKKAI FARDRKKAI	RSISVMIF QALPLMVF RALPVMVF ::: RSAKIEDV KMGELEQO RMSELEQO RMSELEQO	PNQASSD PAQRGASI PGQQGASI * : VMRDLVEI QVLELELI QVVDLEEI QVVDLEEI	SDSTTSG- PEAASGGL PEGASGVP ENRRLRAE ENQKLLVE ENQKLLLE ENQKLLLE	P P N N N	47 55 56 56 107 115 116 116
c. bZIP (basic-leucine zip 70-133 (human)	oper) d	omain in pos	sitions:	t	r Q8UVQ5 p P17861	G5EE07_C Q8UVQ5_C XBP1_HUM XBP1_BOV	ANRE IAN		** *** ** NKNLMNQQI TSDLLSENE THGLVVENO THGLVVENO	NESVMYME EELRORLG DELRORLG DELRORLG	ENNENLM L DTLE M DALV	NSNDACIY	0NVVYEE	EVVGEVA SAVSDLG AKGNEVR	LVTGSS PVAGSA	D E E	167 165 163 163
70-133 (cattle) ´ 61-117 (worm)	Entry	Feature viewer	Publication	ns Exte	rnal links	History											227 221
69-132 (zebrafish)			1	20	40	60	80	100	120	140	160	180	200	220	240		219
								100					200				287
	▼ Doma	ains & sites														2	263 261 261
	Domain																
	Region						-	DOM.	AIN 70-1	33							
	Site							Descrip bZIP	tion				•				
	• Molec	ule processing						17EII									
	• MOIEC	die processing						Evideno	e								

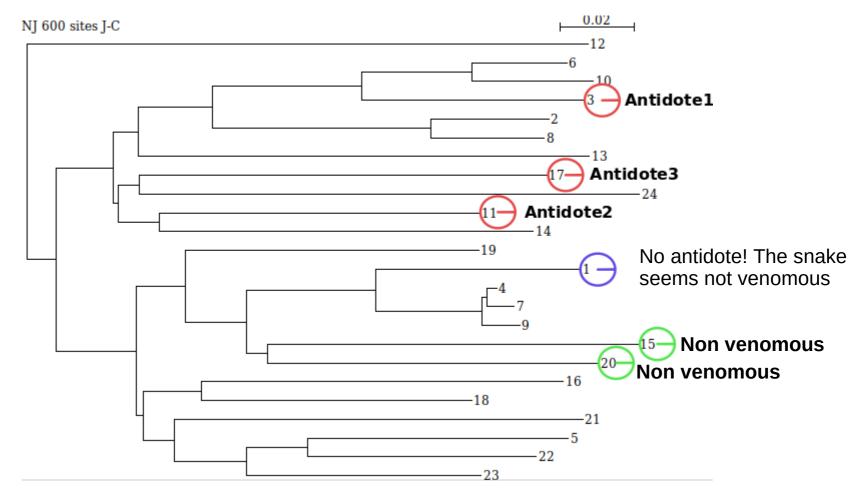
Go to "<u>http://doua.prabi.fr/software/seaview</u>" (or search in Google "SeaView alignment"), download and start SeaView, with which we will generate the phylogenetic trees. Steps:

- 1. Go to -> http://doua.prabi.fr/software/seaview
- 2. Click on "MS Windows" to download the software
- 3. Click on downloaded file "seaview5.exe"
- 4. Ausführen
- 5. Extract
- 6. Go to folder "seaview"
- 7. Click on "seaview.exe"

If you have problems, do not worry \rightarrow Use UniProt

A patient comes to the hospital. He was just bitten by a snake. We have the sequence of the mitochondrial gene ND4 of 24 species of snake (*"snakes.fasta"*; https://cbdm.uni-mainz.de/mb22b/). We have three antidotes available. Given the following information, which antidote would you administer the patient?

- 1) The snake that bit the patient is in terrarium #1.
- 2) The most distant snake species is in terrarium #12.
- 3) Antidote1 is indicated against bites from the species in terrarium #3.
- 4) Antidote2 is indicated against bites from the species in terrarium #11.
- 5) Antidote3 is indicated against bites from the species in terrarium #17.
- 6) Snakes in terrariums #15 and #20 are non-venomous.



1. Align the sequences \rightarrow "Align > Align all"

sel=0	1 Const Docst11 [1]
1	1 Seq:1 Pos:1 1 [1] GCAATCTTACTAAAACTGGGGGGGATACGGCATTATCCGAATGATACAAATCATACCAGTAATAAAAACAGACTTATTTTTACCATTATTCTTGCCCTTTGAGGGGGCAACACTAGCTAATTTAACCCTGCCTA
1	
2	GCAGTCTTATTAAAAATTAGGGGGGTATGGTATGATTCGAATATCCCAAACCTTACCCAATTTAAAAACAGATGTCTTCCTCCCCCTATGGGGGGGG
3	GCAATCCTACTACAAACTGGGGAGGGTATGGGGATTATCCGAATAACAGAATAAAAACAGACTTATCCTACCATTTATCCGCCCCTTTGGGGGGGCAACTCATGCCTACCAAACAGACAG
4	GCCATCCTACTCAAGTTAGGTAGGGTACGGGATTATTCCCGGATAATACAAACTCTCCCCCACAACAAAAACAGATATATTCTTACCATTCATT
5	GCCATCCTACTCAAGTTAGGTGGGTACGGGATTATCCGGATAATACCAAAAACTCTCCCCCACAACAAAAACAGATATATTCTTACCATTGACCTCGCCTTATGGGGGGGG
7	GCAATCCTACTAAAACTAGGGGGGTATGGGATTATCCGAATAATACAAATTATACCAACAATAAAAACAGACTTATCCTACCATTATCCTCGCCCTTTGAGGGGGCAACTCTAGCCTAGCCAATAATACCAGACTCA
/ 0	
0	
10	
11	
12	GCAATTCTCCTTAAACTTGGAGGTTATGGTATAATCCGAATAATACAGATTCTACCCACAACAAAAACAGACATGTTTCTATACCTTTCATAATCCTGTCATTATGGGGGGCAATCCTGCCAACCTGACATCTTGC AACTGGGCGGATATGGAATCATCCGCCTATCTCAAACACACTACCTGCCTAAAAAACAGATATCTTCCTCCCTC
13	
14	GCAATCCTGTTAAAACTAGGAGGATATGGTATTATCCGAATATCCCAAATTTTACCTCTACTAAAAACAGATATATTCCTTCC
15	
16	GCCATCCTACTTAAATTAGGCGGCTACGGAATCATCCGAATAATACAAATTCTACCAACAACAAGATTTATTCCTACCATCATCGTCCTAGCCCCTCTGAGGAGCAACCCTGGCCAACTTAACCTGCCTA GCAGTTTTATTAAAGCTAGGAGGATACGGCATTATCCGAATATCACAAGTCCTCCCAACACTGACATCTTTATCCCCTTCATCACCCTATGAGGAGCCATCCTAGCAAGCCTAACTTGCCTT
17	GCAGTTTTATTAAAGCTAGGAGATACGGCATTATCCGAATATCACAAGTCCTCCCAACACTAAAAACTGACATCTTTATCCCCTTCATCACCCTATGAGGAGCCATCCTAGCAAGCCTAACTTGCCTT
18	
19	
20	GCAATTTTACTAAAACTAGGGGGGTACGGTATTATCCGGATAGTACAGGTCCTCCCAACAATAAAAACAGACCTATTTCTACCATTTATCGTTCTCGCACTTTGAGGGGGCAACACTAGTAATCTTACCTGCCTT
21	GCAATCCTCCTTAAACTGGGAGGATACGGCATTATCCGCACAATACAAGTCCTCCCCACAATAAAAACAGATATGTTCCTACCATTGATATGTACTTGCTTTGTGAGGAGGAGCAACCTTAGCCAACCTCACTTGCTTA GCCATCCTACTCAAGTTAGGCGGGTACGGAATTATCCCGACAATACAAGTCTTCCCACCACAAAAAACAAATATATTTCTACCATTGATCTCGCTCTGTGGGGGGCAATCCTAGCAAACTTAACCTGCCTT
22	GCAATCCTCCTTAAACTGGGAGGATACGGCATTATCCGCACAATACAAGTCCTCCCCACAATAAAAACAGATATGTTCCTACCATTCATT
23	
24	

- 1. Align the sequences \rightarrow "Align > Align all"
- 2. Build phylogenetic tree \rightarrow "Trees > Distance methods > NJ
- 3. Define which antidote to administer

