Dynamic modeling of Protein Kinetics

Alex Anyaegbunam, Ph.D.

The cell reproduces by making an exact copy of itself

The cell reproduces by undergoing several processes: cell cycle

DNA replication: Quantitative description of protein expression

What determines the kinetics of mRNA and protein expression?

How can we describe heterogeneous gene expression at the single-cell level?

Outline

Deterministic model of gene expression

Stochastic model of gene expression captures cellular heterogeneity

Applications: Deterministic modeling of proteins controlling anaphase

A simple model for transcriptional regulation of protein expression

 $\frac{d(mRNA)}{dt} = k_1 - d_1 \cdot mRNA$ $\frac{d(Protein)}{dt} = k_2 \cdot mRNA - d_2 \cdot Protein$

Assumptions

- Translation proportional to mRNA concentration
- First-order decay of mRNA and protein

Assumptions underlying ordinary differential equation models

Continous

Real concentration of mRNAs/proteins

Deterministic

Average behavior of large molecule numbers

Population techniques

What determines the protein dynamics in response to changes in transcription?

$$\frac{d(mRNA)}{dt} = k_1 - d_1 \cdot mRNA$$
$$\frac{d(Protein)}{dt} = k_2 \cdot mRNA - d_2 \cdot Protein$$

Analytical Solution (by integration)

$$mRNA(t) = \overline{mRNA} \cdot (1 - e^{-d_1 t})$$

$$Protein(t) = \overline{Protein} \cdot \left(1 - \frac{d_1 e^{-d_2 t} - d_2 e^{-d_1 t}}{d_1 - d_2}\right)$$

⇒ Approximate solution using numerical integration

Time course of mRNA and protein in response to gene activation

System asymptotically approaches steady state Protein dynamics has a "Response time"

What determines protein expression level at steady state?

Steady state level set by ratio of synthesis and degradation rates

Transcription induces proportional changes in mRNA and protein levels

Protein dynamics solely determined by mRNA and protein degradation rates

$$Protein(t) = \overline{Protein} \cdot \left(1 - \frac{d_1 e^{-d_2 t} - d_2 e^{-d_1 t}}{d_1 - d_2}\right)$$

mRNA degradation rate changes final steady state and response time

protein degradation rate changes final steady state and response time

mRNA and protein synthesis rates change only final steady state

Outline

Deterministic model of gene expression

Stochastic model of gene expression captures cellular heterogeneity

Applications: Deterministic modeling of proteins controlling anaphase

DNA replication: Quantitative description of protein expression

What determines the kinetics of mRNA and protein expression?

How can we describe heterogeneous gene expression at the single-cell level?

Gene expression – a stochastic process

Stochastic dynamics shown for transcription initiation and elongation

Randomness arises from low molecule numbers!

- each cell contains few copies of each gene
- transcription factors often present in low amounts

Intrinsic and extrinsic sources of gene expression variability

Elowitz et al., Science 2002

Stochastic models account for event probabilities at low molecule numbers

Deterministic ODE model vs. Stochastic model

Average behavior of large molecule numbers

Continuous: Concentration of mRNAs/proteins

Probabilistic behavior (randomness) at the single-molecule level

Discrete: Absolute molecule counts

Stochastic version of simple protein expression model

1. RNA production: $RNA \xrightarrow{\beta} RNA + 1$ 2. RNA decay: $RNA \xrightarrow{\gamma_m \cdot RNA} RNA - 1$ 3. Protein production: $protein \xrightarrow{k \cdot RNA} protein + 1$ 4. Protein decay: $protein \xrightarrow{\gamma_p \cdot protein} protein - 1$

Reactions occur with certain probabilities

mRNA and protein given as absolute molecule count (discrete)

Simulation by Gillespie algorithm

- selects most probable next reaction
- updates molecule counts

Simulated temporal evolution of mRNA and protein in a stochastic model

Outline

Deterministic model of gene expression

Stochastic model of gene expression captures cellular heterogeneity

Applications: Deterministic modeling of proteins controlling anaphase

Anaphase is characterized by chromosome segregation

Anaphase events are temporally ordered

Anaphase:

the stage of the cell cycle characterized by chromosome segregation.

Two independent pathways control anaphase events

Deterministic modeling of protein-protein interaction (competition for substrate)

$$\frac{d(mRNA)}{dt} = k_1 - d_1 \cdot mRNA$$
$$\frac{d(Protein)}{dt} = k_2 \cdot mRNA - d_2 \cdot Protein$$

species	rate equations
'Sec'	'SecApc*koff_sec - Apc*Sec*kon_sec'
'Cyc'	'CycApc*koff_cyc - Apc*Cyc*kon_cyc'

Simulation of protein degradation kinetics (rate equations)

А

В

Kinetic model can be used to predict temporal order

What do we learn from the calibrated model?

- > Mechanism of temporal order maintenance
- > Experimental Conditions for reversal of temporal order
- > Which proteins drive temporal order variability?

Double perturbation: a method for terminating cancerous cells in humans

