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How can | use protein interaction data in biological research?

v
What is the function of my gene of interest? a

) ’ . . _
/\*4‘. Is the protein of my interest part of a protein complex?
£
Can | find new protein complexes? :
&

| found 20 genes in my screen that rescued phenotype X:
‘,,:‘\ - do these genes work in the same biological process?
) « - are these genes part of the same protein complex?
o -> do these proteins (tend to) interact with each other?

My protein has many interaction partners,
does it mean that it is of functional importance?
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How can | use protein interaction data in biological research?

Resources for protein interactions v

Methods to analyze protein interaction data X

|

Graph theory



Protein interaction data as a graph

Protein
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Protein interaction data as a graph

Protein
Actual data Node Interaction
Network Vertex\ Link
Graph Edge

V = {v1,v2,V3,V4,...}
E = {(v1,v2),(v2,v3),(V2,v4),...]

- undirected vs directed graph
- weighted vs unweighted graph
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Degree, average degree, and degree distribution

- Degree: number of edges of a vertex
(i.e. number of interactions of a protein)
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Protein interaction networks are scale-free

Yeast protein T ¥
interaction | f
network v ‘ n,
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Protein interaction networks are scale-free
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Protein interaction networks are scale-free
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Degree distribution and scale-free networks
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Degree distribution and scale-free networks

Degree distributions of many real world networks follow a
power law distribution in log-log scale
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Degree distribution and scale-free networks

Degree distributions of many real world networks follow a
power law distribution in log-log scale
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My protein has many interaction partners,
does it mean that it is of functional importance?



Drolcins are traditionally identified on
the basis of their individual actions as

catalysts, signalling molecules, or
building blocks in cells and microorgan-
isms. But our post-genomic view is expand-
ing the protein’s role into an element in a
network of protein—protein interactions as
well, in which it has a contextual or cellular
function within functional modules'?. Here
we provide quantitative support for this
idea by demonstrating that the phenotypic
consequence of a single gene deletion in the
yeast Saccharomyces cerevisiae is affected to
a large extent by the topological position of
its protein product in the complex hierar-
chical web of molecular interactions.

The S. cerevisiae protein—protein inter-
action network we investigate has 1,870
proteins as nodes, connected by 2,240 iden-
tified direct physical interactions, and is
derived from combined, non-overlapping
data™, obtained mostly by systematic two-
hybrid analyses’. Owing to its size, a com-
plete map of the network (Fig. la),
although informative, in itself offers little
insight into its large-scale characteristics.
Our first goal was therefore to identify the
architecture of this network, determining
whether it is best described by an inherently
uniform exponential topology, with pro-
teins on average possessing the same num-
ber of links, or by a highly heterogeneous

My protein has many interaction partners,
does it mean that it is of functional importance?

_ethality and centrality in protein networks

The most highly connected proteinsinthe cell are the mostimportant forits survival.

Figure 1 Charactenistics of the yeast proteome. a, Map of peotein-protein interactions. The largest cluster, which contains ~78% of all
proteins, is shown. The colour of a node signifies the p ypic effect of g the com protein (red, lethal; green, non-
lethal, orange, siow growth; yellow, b, G Al of g yeast proteins, giving the probability that a
given protein interacts with & other proteins. The exponential cut-off* Indicates that the number of proteins with more than 20 interactions
is slightly less than expected for pure scale-free netwoeks. In the absence of data on the ink directions, all interactions have been consid-
ered as bidi The the short-length scale comection has value k,~1. ¢, The fraction of essential proteins
with exactly k inks vessus theie K, In the yeast The list of 1,572 mutants with known phenotypic peolle was
obtained from the Proteome database”. Detalled statistical analysis, Including #=0.75 for Pearson's linear correlation coefficient,
demonstrates a positive corelation between lethality and connectivity. Foe addtional details, see http://www.nd.edu/~netwoeks/ced.

Jeong et al Nature 2001
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Numerous algorithms exist to find
communities in a graph

Protein complexes show as clusters in

a network

l

Communities are locally dense connected

subgraphs in a network

l

Vertex of a community is more linked to
other vertices of that community than

to vertices outside

Martinez-Noel et al JMB 2018, networksciencebook.com
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Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by
the edges that lead from one vertex to the other.

A path from v to vio

Shortest path d from vi to vio

-> a path can represent information flow in a graph

How many shortest paths cross a vertex? —— Node betweenness
How many shortest paths go over an edge? —— Edge betweenness

High degree = high betweenness
High betweenness

l

Important for system

Tapiocozzo, https://commons.wikimedia.org/w/index.php?curid=39064835
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Measuring closeness in networks

Do candidate proteins from my screen tend to interact with each other?

-> count number of edges between vertices that are candidate proteins
or
calculate average shortest path between them:

How close are all the vertices vi to vi2
to each other?

v
Calculate the average shortest path:

N
1
Le = N-(N-1) _Z1di,J N=12
j=

%]
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Randomizing graphs to compute significances
Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

How close would be
in the network?

l

Can | randomly choose any 12 proteins in the
network?

Possible scenario

— Degree distr. of candidate proteins

Need to randomly choose 12 proteins — Dogroe distr. of whole network

with the same degree distribution like +——

candidate proteins /,
¥ \
>

\\
Q@X R Pegree

Frequency
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Randomizing graphs to compute significances

‘r
Need to randomly choose 12 proteins with the (6 m
same degree distribution like candidate proteins \2“& @

Solution: Randomize network instead - in a degree-controlled way

Edges are shuffled such that every vertex maintains its degree
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Randomizing graphs to compute significances
Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

l

Generate a high number of
degree-controlled randomized
networks

l

Compute closeness of candidate proteins
In each of them

A A
Distribution from Distribution from
> |random networks > | random networks
Q _ c _
- ) O
g T Value from =1 e Value from
S real network o real network
“ Ll | “L il |
> >
14 2.17
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Luck et al Nature 2020
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Study bias in curated protein interaction data can
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Network closeness of disease genes and tissue-specific proteins

/

Uncovering disease-disease
relationships through the
incomplete interactome

Jorg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc Vidal,
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Network closeness of disease genes and tissue-specific proteins

Uncovering disease-disease Areference map of the humanbinary
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What is the function of my gene of interest?

Guilt-by-association

® Candidate protein
Known apoptosis function

other

Fuxman Bass et al Nature Methods 2013, Luck et al Nature 2020
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What is the function of my gene of interest?

Guilt-by-association
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Summary

Molecular interaction data can be represented as graphs
Biological networks are scale-free

Use degree-controlled randomized networks to look for trends
Trends in literature-curated networks can be falisified

Guilt-by-association is a method to predict functions of proteins
using interaction data



