Master Module
Proteinbiochemistry and Bioinformatics

March 2022
Session: Protein interaction networks

4. Graph-theoretical aspects of protein interaction networks

How can I use protein interaction data in biological research?

What is the function of my gene of interest?

Is the protein of my interest part of a protein complex?

Can I find new protein complexes?

I found 20 genes in my screen that rescued phenotype X :

- do these genes work in the same biological process?
- are these genes part of the same protein complex?
$->$ do these proteins (tend to) interact with each other?

My protein has many interaction partners, does it mean that it is of functional importance?

How can I use protein interaction data in biological research?

Resources for protein interactions

How can I use protein interaction data in biological research?

Resources for protein interactions

Methods to analyze protein interaction data

Resources for protein interactions

Methods to analyze protein interaction data

Graph theory

Protein interaction data as a graph

Protein interaction data as a graph

Actual data
Network
Graph

Protein interaction data as a graph

Actual data
Network Graph

$$
\begin{aligned}
& V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \ldots\right\} \\
& E=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{4}\right), \ldots\right\}
\end{aligned}
$$

- undirected vs directed graph

Protein interaction data as a graph

Actual data
Network Graph

Protein

$$
\begin{aligned}
& V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \ldots\right\} \\
& E=\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{4}\right), \ldots\right\}
\end{aligned}
$$

- undirected vs directed graph
- weighted vs unweighted graph

Degree, average degree, and degree distribution

Degree, average degree, and degree distribution

- Degree: number of edges of a vertex (i.e. number of interactions of a protein)

Degree, average degree, and degree distribution

- Degree: number of edges of a vertex (i.e. number of interactions of a protein)
$\mathrm{k}_{1}=1, \mathrm{k}_{2}=4, \mathrm{k}_{4}=3$
$->k_{i}$ is the degree of vertex v_{i}

Degree, average degree, and degree distribution

- Degree: number of edges of a vertex (i.e. number of interactions of a protein)

$$
\begin{aligned}
& k_{1}=1, k_{2}=4, k_{4}=3 \\
& ->k_{i} \text { is the degree of vertex } v_{i}
\end{aligned}
$$

- Average degree

-> network property

$$
\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i} \quad N=\text { number of vertices in graph }
$$

Degree, average degree, and degree distribution

- Degree: number of edges of a vertex (i.e. number of interactions of a protein)

$$
\begin{aligned}
& k_{1}=1, k_{2}=4, k_{4}=3 \\
& ->k_{i} \text { is the degree of vertex } v_{i}
\end{aligned}
$$

- Average degree

-> network property

$$
\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i} \quad N=\text { number of vertices in graph }
$$

- Degree distribution

Degree, average degree, and degree distribution

- Degree: number of edges of a vertex (i.e. number of interactions of a protein)

$$
\begin{aligned}
& k_{1}=1, k_{2}=4, k_{4}=3 \\
& ->k_{i} \text { is the degree of vertex } v_{i}
\end{aligned}
$$

- Average degree
-> network property

$$
\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i} \quad N=\text { number of vertices in graph }
$$

- Degree distribution
-> network property, informs about the topology of the network

Degree, average degree, and degree distribution

- Degree: number of edges of a vertex (i.e. number of interactions of a protein)

$$
\begin{aligned}
& \mathrm{k}_{1}=1, \mathrm{k}_{2}=4, \mathrm{k}_{4}=3 \\
& ->\mathrm{k}_{\mathrm{i}} \text { is the degree of vertex } \mathrm{v}_{\mathrm{i}}
\end{aligned}
$$

- Average degree
-> network property

$$
\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i} \quad N=\text { number of vertices in graph }
$$

- Degree distribution
-> network property, informs about the topology of the network

Protein interaction networks are scale-free

Protein interaction networks are scale-free

Protein interaction networks are scale-free

Degree distribution and scale-free networks

Degree distribution and scale-free networks

Degree distribution and scale-free networks

Degree distribution and scale-free networks

Degree distributions of many real world networks follow a power law distribution in log-log scale

Degree distribution and scale-free networks

Degree distributions of many real world networks follow a power law distribution in log-log scale

Power law distribution

$$
\mathrm{p}_{\mathrm{k}} \sim \mathrm{k}-\mathrm{\gamma}
$$

$\log p_{k} \sim-\gamma \log k$

Degree distribution and scale-free networks

Degree distributions of many real world networks follow a power law distribution in log-log scale

Power law distribution

$$
\mathrm{p}_{\mathrm{k}} \sim \mathrm{k}^{-\gamma}
$$

$\log p_{k} \sim-\gamma \log k$

Networks whose degree distribution follows a power law, are called scale-free.

My protein has many interaction partners, does it mean that it is of functional importance?

My protein has many interaction partners, does it mean that it is of functional importance?

Lethality and centrality in protein networks
The most highly connected proteins in the cell are the most important for its survival.

My protein has many interaction partners, does it mean that it is of functional importance?

Lethality and centrality in protein networks
The most highly connected proteins in the cell are the most important for its survival

My protein has many interaction partners, does it mean that it is of functional importance?

Lethality and centrality in protein networks
The most highly connected proteins in the cell are the most important for its survival.

roteins are traditionally identified on the basis of their individual actions as building blocks in cells and microorganisms. But our post-genomic view is expanding the protein's role into an element in a network of protein-protein interactions as well, in which it has a contextual or cellular function within functional modules ${ }^{1{ }^{1} 2}$. Here we provide quantitative support for this idea by demonstrating that the phenotypic consequence of a single gene deletion in the yeast Saccharomyces cerevisiae is affected to a large extent by the topological position of its protein product in the complex hierarchical web of molecular interactions. The S. cerevisiae protein-protein interaction network we investigate has 1,870 proteins as nodes, connected by 2,240 identified direct physical interactions, and is derived from combined, non-overlapping data ${ }^{3 / 4}$, obtained mostly by systematic twohybrid analyses. ${ }^{3}$. Owing to its size, a complete map of the network (Fig. 1a), although informative, in itself offers little insight intc Our first gc architecture whether it is Cited 3, uniform exponenual toporogy, wiun pro- teins on average possessing the same number of links, or by a highly heterogeneous	Figure 1 Chapacteristics of the yeast proteome. a, Map of protein-ppotein interactions. The largest cluster, which contains $\sim 78 \%$ of all proteins, is shown. The colour of a node signilies the phenotypic effect of removing the corresponding protein (red, lethal; green, non- 266 times! listrbution $P(x)$ of interacting yeast proteins, giving the probability that a -off ${ }^{5}$ indicates that the number of proteins with more than 20 interactions absence of data on the link directions, all interactions have been considh scale comection has value $k_{0} \sim 1$. \mathbf{c}, The fraction of essential proteins win exacuy κ inks versus tneir connecivity, κ, in the yeast proteome. The list of 1,572 mutants with known phenotypic profle was obtained from the Proteome database ${ }^{13}$. Detailed statistical analysis, including $r=0.75$ for Pearson's linear comelation coefficient, demonstrates a positive comelation between lethality and connectivity. Fop additional details, see htip://www.nd.edu/~networks/cell.
	Jeong et al Nature 2001

Are essential genes more highly studied?

Jeong et al Nature 2001

My protein has many interaction partners, does it mean that it is of functional importance?

Lethality and centrality in protein networks

Degree distributions are influenced by technical assay biases

My protein has many interaction partners, does it mean that it is of functional importance?

Lethality and centrality in protein networks

Are essential genes more highly studied?

Degree distributions are influenced by technical assay biases

My protein has many interaction partners, does it mean that it is of functional importance?

Lethality and centrality in protein networks

Are essential genes more highly studied?

Degree distributions are influenced by technical assay biases

intolerance

HuRI
BioPlex
Literature

Finding communities in graphs

Finding communities in graphs

Protein complexes show as clusters in a network

Finding communities in graphs

Protein complexes show as clusters in a network

Communities are locally dense connected subgraphs in a network

Finding communities in graphs

Finding communities in graphs

Numerous algorithms exist to find communities in a graph

Protein complexes show as clusters in a network

Communities are locally dense connected subgraphs in a network

Vertex of a community is more linked to other vertices of that community than to vertices outside

Martinez-Noel et al JMB 2018, networksciencebook.com

Can I find new protein complexes or complex members?

Can I find new protein complexes or complex members?

Identification of Commander complex

Role in embryonic development

Can I find new protein complexes or complex members?

Identification of Commander complex

Role in embryonic development

Identification of new complex members

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from v_{1} to v_{10}

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from v_{1} to v_{10}
Shortest path d from v_{1} to v_{10}

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from v_{1} to v_{10}
Shortest path d from v_{1} to v_{10}
-> a path can represent information flow in a graph

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from v_{1} to v_{10}
Shortest path d from v_{1} to v_{10}
-> a path can represent information flow in a graph

How many shortest paths cross a vertex?

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from v_{1} to v_{10}
Shortest path d from v_{1} to v_{10}
-> a path can represent information flow in a graph

How many shortest paths cross a vertex? \longrightarrow Node betweenness

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from v_{1} to v_{10}
Shortest path d from v_{1} to v_{10}
-> a path can represent information flow in a graph

How many shortest paths cross a vertex? \longrightarrow Node betweenness How many shortest paths go over an edge?

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from v_{1} to v_{10}
Shortest path d from v_{1} to v_{10}
-> a path can represent information flow in a graph

How many shortest paths cross a vertex? \longrightarrow Node betweenness
How many shortest paths go over an edge? \longrightarrow Edge betweenness

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from V_{1} to V_{10}
Shortest path d from v_{1} to v_{10}
-> a path can represent information flow in a graph

How many shortest paths cross a vertex? \longrightarrow Node betweenness How many shortest paths go over an edge? \longrightarrow Edge betweenness

High betweenness
Important for system

Shortest paths in graphs and betweenness centrality

A path between two vertices is formed by the edges that lead from one vertex to the other.

A path from V_{1} to V_{10}
Shortest path d from v_{1} to v_{10}
-> a path can represent information flow in a graph

How many shortest paths cross a vertex? \longrightarrow Node betweenness How many shortest paths go over an edge? \longrightarrow Edge betweenness

High degree $\not \approx$ high betweenness

Measuring closeness in networks

Do candidate proteins from my screen tend to interact with each other?

Measuring closeness in networks

Do candidate proteins from my screen tend to interact with each other?
-> count number of edges between vertices that are candidate proteins or
calculate average shortest path between them:

Measuring closeness in networks

Do candidate proteins from my screen tend to interact with each other?
-> count number of edges between vertices that are candidate proteins or
calculate average shortest path between them:

How close are all the vertices v_{1} to v_{12} to each other?

Calculate the average shortest path:

$$
L_{G}=\frac{1}{N \cdot(N-1)} \sum_{\substack{i, j=1 \\ i \neq j}}^{N} d_{i, j} \quad N=12
$$

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

How close would be 12 randomly selected proteins
in the network?
\downarrow
Can I randomly choose any 12 proteins in the network?

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Randomizing graphs to compute significances

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Need to randomly choose 12 proteins with the same degree distribution like candidate proteins

Randomizing graphs to compute significances

Need to randomly choose 12 proteins with the same degree distribution like candidate proteins

Randomizing graphs to compute significances

Need to randomly choose 12 proteins with the same degree distribution like candidate proteins

Solution: Randomize network instead - in a degree-controlled way

Randomizing graphs to compute significances

Need to randomly choose 12 proteins with the same degree distribution like candidate proteins

Solution: Randomize network instead - in a degree-controlled way

Edges are shuffled such that every vertex maintains its degree

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

Generate a high number of degree-controlled randomized networks

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

Generate a high number of degree-controlled randomized networks

Compute closeness of candidate proteins in each of them

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Randomizing graphs to compute significances

Do candidate proteins tend to interact with each other?

Number of edges: 14
Average shortest path: 2.17

Generate a high number of degree-controlled randomized networks

Compute closeness of candidate proteins in each of them

Number of edges

Study bias in curated protein interaction data can falsify network analyses

Study bias in curated protein interaction data can falsify network analyses

Literature curation

Study bias in curated protein interaction data can falsify network analyses

Literature curation

Systematic mapping

Study bias in curated protein interaction data can falsify network analyses

Literature curation Systematic mapping

Study bias in curated protein interaction data can falsify network analyses

Literature curation

Avg. shortest path

Systematic mapping

Network closeness of disease genes and tissue-specific proteins

Uncovering disease-disease relationships through the incomplete interactome

Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc Vidal, Joseph Loscalzo, Albert-László Barabási*

Science 2015

A reference map of the human binary protein interactome

Kátja Luck ${ }^{1,2,3,33}$, Dae-Kyum Kim ${ }^{1,4,5,6,33}$, Luke Lambourne ${ }^{1,2,3,33}$, Kerstin Spirohn 1,2,3,33,
David E. Hill ${ }^{1,2,3 凶}$, Marc Vidal ${ }^{1,2 \boxtimes}$, Frederick P. Roth ${ }^{1,4,5,5,16,32 \boxtimes}$ \& Michael A. Calderwood ${ }^{1,2,3 \boxtimes}$

Network closeness of disease genes and tissue-specific proteins

Uncovering disease-disease relationships through the incomplete interactome

Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc Vidal, Joseph Loscalzo, Albert-László Barabási*

Science 2015

A reference map of the human binary protein interactome

Kátja Luck ${ }^{1,2,3,33}$, Dae-Kyum Kim ${ }^{1,4,5,6,33}$, Luke Lambourne ${ }^{1,2,3,33}$, Kerstin Spirohn 1,2,3,33
David E. Hill ${ }^{1,2,3 凶}$, Marc Vidal ${ }^{1,2 \otimes}$, Frederick P. Roth ${ }^{1,4,5,6,16,32 \boxtimes}$ \& Michael A. Calderwood ${ }^{1,2,3 凶}$

What is the function of my gene of interest?

Guilt-by-association

- Candidate protein

Known apoptosis function
other

What is the function of my gene of interest?

Guilt-by-association

- Candidate protein

Known apoptosis function

Avg. shortest path to apoptosis proteins

What is the function of my gene of interest?

Guilt-by-association

- Candidate protein

Known apoptosis function
other

Avg. shortest path to apoptosis proteins

OTU deubiquitinase 6A

What is the function of my gene of interest?

Guilt-by-association

- Candidate protein

Known apoptosis function

- other

Avg. shortest path to apoptosis proteins

What is the function of my gene of interest?

Guilt-by-association

- Candidate protein

Known apoptosis function

other

Avg. shortest path to apoptosis proteins

OTUD6A expression results in earlier cell death

Summary

- Molecular interaction data can be represented as graphs
- Biological networks are scale-free
- Use degree-controlled randomized networks to look for trends
- Trends in literature-curated networks can be falisified
- Guilt-by-association is a method to predict functions of proteins using interaction data

