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How can I use protein interaction data in biological research?

What is the function of my gene of interest?

Is the protein of my interest part of a protein complex?

Can I find new protein complexes?

I found 20 genes in my screen that rescued phenotype X:

- do these genes work in the same biological process?

- are these genes part of the same protein complex?

-> do these proteins (tend to) interact with each other?

My protein has many interaction partners,  
does it mean that it is of functional importance?
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Finding communities in graphs

Communities are locally dense connected  
subgraphs in a network

Vertex of a community is more linked to  
other vertices of that community than  

to vertices outside

Protein complexes show as clusters in  
a network

Numerous algorithms exist to find  
communities in a graph

Martinez-Noel et al JMB 2018, networksciencebook.com
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Identification of Commander complex

Role in embryonic development

Wan et al Science 2015 Huttlin et al Cell 2015

Identification of new complex members

Intraciliary Transport Particle A

FHF complex

Can I find new protein complexes or complex members?
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A path between two vertices is formed by  
the edges that lead from one vertex to the other.

A path from v1 to v10

Shortest path d from v1 to v10

How many shortest paths cross a vertex? Node betweenness
How many shortest paths go over an edge? Edge betweenness

-> a path can represent information flow in a graph

High betweenness

Important for system

High degree ≉ high betweenness

Tapiocozzo, https://commons.wikimedia.org/w/index.php?curid=39064835
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Summary

• Molecular interaction data can be represented as graphs


• Biological networks are scale-free


• Use degree-controlled randomized networks to look for trends


• Trends in literature-curated networks can be falisified


• Guilt-by-association is a method to predict functions of proteins  
using interaction data


