Master Module Proteinbiochemistry and Bioinformatics March 2022

Protein interaction networks

Katja Luck, PhD

Some organizational information

- Questions throughout the lecture are welcome
- I will ask questions, too!
- Happy to receive feedback on the course

1. What are protein interactions?

- 1. What are protein interactions?
- 2. Methods to detect protein interactions

- 1. What are protein interactions?
- 2. Methods to detect protein interactions
- 3. Bioinformatic resources for protein interactions

- 1. What are protein interactions?
- 2. Methods to detect protein interactions
- 3. Bioinformatic resources for protein interactions
- 4. Graph theoretical aspects of protein interaction networks

- 1. What are protein interactions?
- 2. Methods to detect protein interactions
- 3. Bioinformatic resources for protein interactions
- 4. Graph theoretical aspects of protein interaction networks
- 5. Visualizing and analyzing networks using Cytoscape

Master Module Proteinbiochemistry and Bioinformatics March 2022

Session: Protein interaction networks

1. What are protein interactions?

Why do protein interactions matter?

➤ Gene X functions in Y - How?

humanoriginproject.com

Why do protein interactions matter?

Why do protein interactions matter?

Protein interactions mediate cellular function

Protein interactions mediate cellular function

Protein interactions are complex

Protein interactions are complex

Protein interactions are complex

Protein interaction strength is expressed as dissociation constant K_D

 $[A] + [B] \rightleftharpoons [AB]$

Protein interaction strength is expressed as dissociation constant K_{D}

 $[A] + [B] \rightleftharpoons [AB]$

$$K_{D} = \frac{[A][B]}{[AB]}$$

Protein interaction strength is expressed as dissociation constant K_D

$$[A] + [B] \rightleftharpoons [AB]$$

$$K_{D} = \frac{[A][B]}{[AB]}$$

– the smaller the K_D , the stronger the interaction

Protein interaction strength is expressed as dissociation constant K_D

$$[A] + [B] \rightleftharpoons [AB]$$

$$K_{D} = \frac{[A][B]}{[AB]}$$

- the smaller the K_D , the stronger the interaction
- nM -> very strong, μ M -> rather weak

Protein interaction strength is expressed as dissociation constant K_D

$$[A] + [B] \rightleftharpoons [AB]$$

$$K_{D} = \frac{[A][B]}{[AB]}$$

- the smaller the K_D , the stronger the interaction
- nM -> very strong, μ M -> rather weak
- it is a continuum!

- interaction strength (K_D) is a continuum
- there is no universal cutoff on the K_{D}
- discrimination into binding/no binding is assay-dependent

- interaction strength (K_D) is a continuum
- there is no universal cutoff on the $\ensuremath{\mathsf{K}_{\mathsf{D}}}$
- discrimination into binding/no binding is assay-dependent

Increasing functional relevance?

- interaction strength (K_D) is a continuum
- there is no universal cutoff on the $\ensuremath{\mathsf{K}_{\mathsf{D}}}$
- discrimination into binding/no binding is assay-dependent

- interaction strength (K_D) is a continuum
- there is no universal cutoff on the $\ensuremath{\mathsf{K}_{\mathsf{D}}}$
- discrimination into binding/no binding is assay-dependent

- interaction strength (K_D) is a continuum
- there is no universal cutoff on the $\ensuremath{\mathsf{K}_{\mathsf{D}}}$
- discrimination into binding/no binding is assay-dependent

All life depends on the proper formation and dissociation of protein interactions

Mechanisms of protein interaction specificity?

If we knew all (human) protein interactions...

Master Module Proteinbiochemistry and Bioinformatics March 2022

Session: Protein interaction networks

2. Methods to detect protein interactions

Why is it so hard to detect protein interactions?

-interaction detection method -experimental interaction detection -biochemical affinity technology -aggregation assay -chromatography technology cosedimentation + cross-linking study electrophoretic mobility-based method enzymatic study + footprinting -nucleotide exchange assay -polymerization probe interaction assay virotrap -biophysical biosensor circular dichroism detection by mass spectrometry differential scanning calorimetry electron diffraction electron resonance enzyme-mediated activation of radical sources -equilibrium dialysis -filter trap assav fluorescence technology force measurement force spectroscopy -infrared spectroscopy -isothermal titration calorimetry light scattering -luminiscence technology microscale thermophoresis -molecular sieving neutron diffraction neutron fiber diffraction -nuclear magnetic resonance -rheology measurement -scintillation proximity assay -small angle neutron scattering thermal shift binding -ultraviolet-visible spectroscopy + x-ray crystallography genetic interference -chemical rna modification plus base pairing prediction -random spore analysis synthetic genetic analysis imaging technique -atomic force microscopy -confocal microscopy electron microscopy -fluorescence microscopy -fluorescent protein-protein interaction-visualization light microscopy -super-resolution microscopy -x-ray tomography -phenotype-based detection assay -nuclear translocation assay -post transcriptional interference -antisense oligonucleotides antisense rna miRNA interference luciferase reporter assay -rna interference -protein complementation assay Split Intein-Mediated Protein Ligation -adenvlate cyclase complementation -beta galactosidase complementation -beta lactamase complementation -bimolecular fluorescence complementation -dihydrofolate reductase reconstruction -kiss mammalian protein protein interaction trap -protein kinase A complementation -reverse ras recruitment system split luciferase complementation tox-r dimerization assay transcriptional complementation assay

https://www.ebi.ac.uk/ols/ontologies/mi

Different assays produce different types of protein interaction data

Direct assays

- direct interactions
- protein fragments
- with K_D
- low-throughput

Binary assays

- binary interactions
- full length proteins
- no K_D
- over-expression

Co-complex assays

- co-complex associations
- full length proteins
- no K_D
- over-expression and endogenous

Different assays produce different types of protein interaction data

Direct assays

- direct interactions
- protein fragments
- with K_D
- low-throughput

Binary assays

- binary interactions
- full length proteins
- no K_D
- over-expression

Co-complex assays

- co-complex associations
- full length proteins
- no K_D
- over-expression and endogenous

- all are called protein interactions
- assays differ in which interactions they can detect

Sensitivity of protein interaction assays

Sensitivity of protein interaction assays

Known protein interactions

Sensitivity of protein interaction assays

Known protein interactions

Why are some interactions detected by some assays and not by others?

Sensitivity of protein interaction assays

Known protein interactions

Why are some interactions detected by some assays and not by others?

Protein fusions

Sensitivity of protein interaction assays

Assays

Why are some interactions detected by some assays and not by others?

Protein fusions Interaction strength

Sensitivity of protein interaction assays

Why are some interactions detected by some assays and not by others?

Sensitivity of protein interaction assays

Why are some interactions detected by some assays and not by others?

Sensitivity of protein interaction assays

Why are some interactions detected by some assays and not by others?

Braun et al Nature Methods 2009

Specificity of protein interaction assays

Specificity of protein interaction assays

Why would an assay erroneously report a protein interaction?

Specificity of protein interaction assays

Why would an assay erroneously report a protein interaction?

Protein fusions

Specificity of protein interaction assays

Why would an assay erroneously report a protein interaction?

Protein fusions

Specificity of protein interaction assays

Why would an assay erroneously report a protein interaction?

Specificity of protein interaction assays

Why would an assay erroneously report a protein interaction?

Why would an assay erroneously report a protein interaction?

Assays

Accuracy of protein interaction assays Specificity of protein interaction assays Random protein pairs

Why would an assay erroneously report a protein interaction?

Correct benchmarking of assays

Correct benchmarking of assays

Correct interpretation of protein interaction data Low overlap

Low sensitivity High specificity

Braun et al Nature Methods 2009, Luck et al TiBS 2017

Often artificial context when protein interaction is detected

In vitro

Often artificial context when protein interaction is detected

In vitro

Often artificial context when protein interaction is detected

In vitro

AB

Cellular context

Often artificial context when protein interaction is detected

Cellular context

Cell lysis

Often artificial context when protein interaction is detected

At which cellular context is a detected protein interaction functional?

Often artificial context when protein interaction is detected

At which cellular context is a detected protein interaction functional?

Should we delete 'non-functional' interactions?
Functional relevance of detected protein interactions

Often artificial context when protein interaction is detected

At which cellular context is a detected protein interaction functional?

Should we delete 'non-functional' interactions?

Functional relevance of detected protein interactions

Often artificial context when protein interaction is detected

At which cellular context is a detected protein interaction functional?

Should we delete 'non-functional' interactions?

Functional relevance of detected protein interactions

Often artificial context when protein interaction is detected

At which cellular context is a detected protein interaction functional?

Should we delete 'non-functional' interactions?

Methods to detected protein interactions

Summary

- interaction strength is a continuum
- most common methods are direct, binary, and co-complex assays
- different methods detect different types of protein interactions
- many interactions remain undetected
- if properly controlled interaction data can be of high quality
- it is difficult to distinguish between functional and non-functional protein interactions