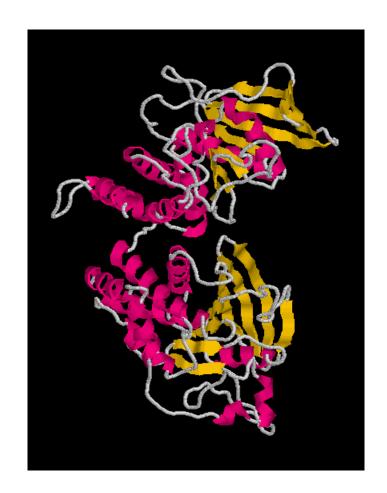


Protein domains

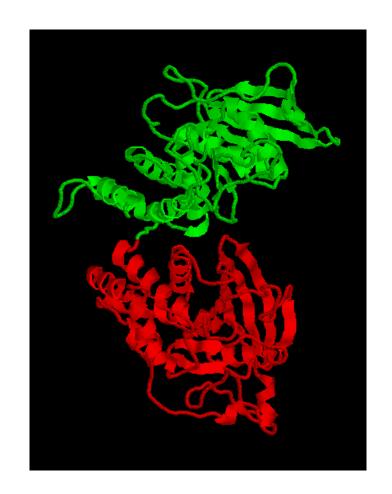

Miguel Andrade
Faculty of Biology,
Institute of Organismic Molecular Evolution,
Johannes Gutenberg University
Mainz, Germany
andrade@uni-mainz.de

Introduction

Protein domains are structural units (average 160 aa) that share:

Function Folding Evolution

Proteins normally are multidomain (average 300 aa)



Introduction

Protein domains are structural units (average 160 aa) that share:

Function Folding Evolution

Proteins normally are multidomain (average 300 aa)

Domains

Why to search for domains:

Protein structural determination methods such as X-ray crystallography and NMR have size limitations that limit their use.

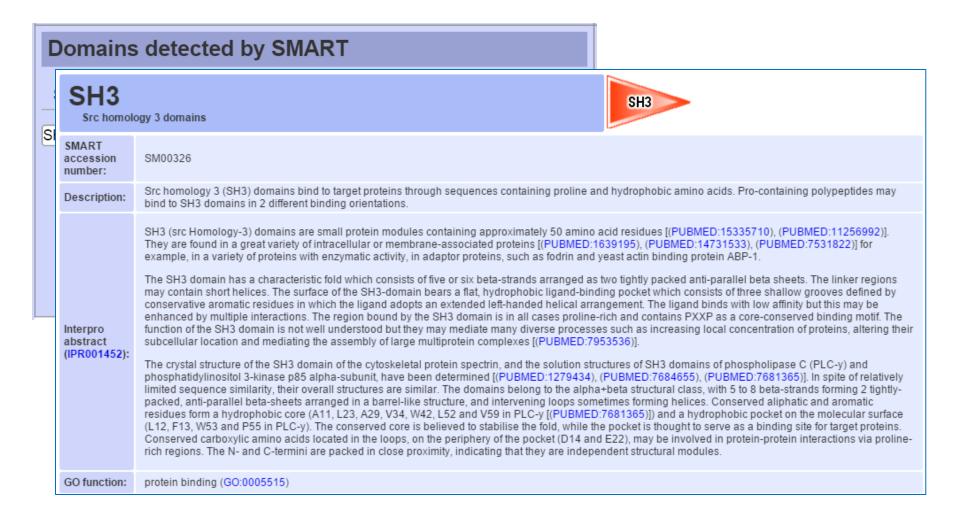
Multiple sequence alignment at the domain level can result in the detection of homologous sequences that are more difficult to detect using a complete chain sequence.

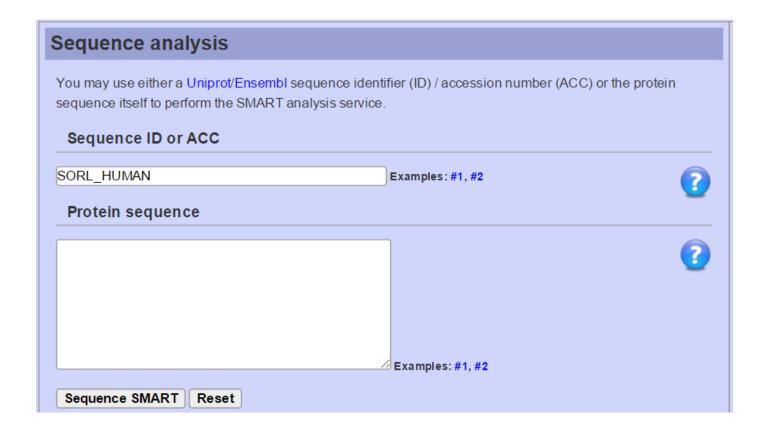
Methods used to gain an insight into the structure and function of a protein work best at the domain level.

Peer Bork http://smart.embl.de/

Manual definition of domain (bibliography)

Generate profile from instances of domain Search for remote homologs (HMMer) Include them in profile Iterate until convergence


Schultz et al (1998) PNAS


. . .

Letunic et al (2020) Nucleic Acids Research

Domain databases

Extra features: Signal-peptide, low complexity, TM, coiled coils

Confidently predicted domains, repeats, motifs and features:

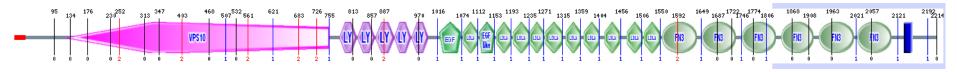
Desire Food Freebox

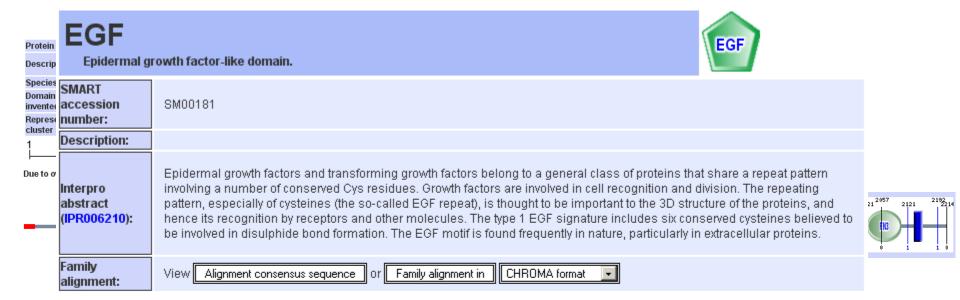
Name	Begin	End	E-value
signal peptide	1	36	-
VPS10	125	741	0.00e+00
LY	761	806	2.88e+00
LY	807	851	3.94e-04
LY	852	896	5.31e-10
LY	897	939	1.76e-15
low complexity	968	979	-
EGF	1006	1042	1.87e+01
LDLa	1059	1098	2.69e-10
LDLa	1100	1138	1.62e-13
EGF_like	1138	1177	5.24e+01
LDLa	1139	1178	1.46e-11
LDLa	1193	1230	2.07e-11
LDLa	1240	1278	2.91e-06
LDLa	1286	1321	3.21e-08
LDLa	1326	1369	1.27e-06
FN3	1370	1448	1.36e-03
transmembrane	1584	1606	-

Additional information

Display other IDs, orthology and alternative splicing data for this sequence.

Domain architecture analysis


This domain architecture was probably invented with the emergence of Hydra viridis.


Display all proteins with similar domain organisation.

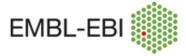
Display all proteins with similar domain composition.

The follo	wing proteins have the same domain composition as your query protein.			
	play the domain architecture 🔻 of 🔼 LL (17) or selected (below) proteins. nly single domain sequences in the fasta file, type domain name here:			
Taxonomic	tree of query results.			
Ē □ Eukaryota (17)				
— ☐ Metazoa (17)				
<u> </u>	Arthropoda (5)			
otein	UPI000013D0B1 (source)			
scription	Sortilin-related receptor precursor (Sorting protein-related receptor containing LDLR class A repeats) (SorLA) (SorLA-1) (Low-density lipoprotein receptor relative will ligand-binding repeats) (LR11).			
ecies	Homo sapiens			
main architecture ⁄ented in	Eutheria Control Contr			
presentative of proteil Ister	CLUST_UPI000013D0B1			
100 200				

Due to overlapping domains, there are 4 representations of the protein

There are 43703 EGF domains in 14525 proteins in SMART's nrdb database.

Click on the following links for more information.


Evolution (species in which this domain is found)

▽Structure (3D structures containing this domain)

3D Structures of EGF domains in PDB

1a3p, 1adx, 1cqe, 1cqe, 1cvu, 1cvu, 1cvu, 1cxv, 1cx2, 1cx2, 1cx2, 1ddx, 1ddx, 1ddx, 1ddx, 1ddx, 1ddx, 1dx5, 1dx5, 1dx5, 1dx5, 1dx5, 1ebv, 1egf, 1epg, 1eph, 1epi, 1epj, 1eqg, 1eqp, 1eqh, 1eqh, 1esl, 1fe2, 1fjs, 1fsb, 1g1q, 1g1q, 1g1q, 1g1q, 1g1r, 1g1r, 1g1r, 1g1r, 1g1s, 1g1s, 1g1s, 1g1t, 1gk5, 1gl4, 1hae, 1haf, 1hcg, 1hre, 1hrf, 1ht5, 1ht5, 1ht8, 1ht8, 1igx, 1igz, 1ijq, 1ijq, 1iox, 1ip0, 1ivo, 1ivo, 1j9c, 1jbu, 1jl9, 1jl9, 1k36, 1k37, 1kig, 1kli, 1klj, 1kye, 1mox, 1mox, 1mq5, 1mq6, 1nql, 1p9j, 1pge, 1pge, 1pgf, 1pgg, 1pgg, 1prh, 1prh, 1pth, 1pth, 1pxx, 1pxx, 1pxx, 1qx4g, 1q4g, 1qfk, 1rfn, 1tpg, 1u67, 1v3x, 1w7x, 1w8b, 1xdt, 1xfe, 1ygc, 1yo8, 1yuf, 1yug, 1z1y, 1z27, 1z3g, 1z3g, 1z6e, 1zaq, 2adx, 2ayl, 2ayl, 2bmg, 2bok, 2bq6, 2bq7, 2bqw, 2bz6, 2d1j, 2ddu, 2e26, 2fzz, 2g00, 2gd4, 2gd4, 2gy5, 2gy7, 2i9a, 2i9a, 2i9a, 2i9a, 2i9b, 2i9b, 2i9b, 2oye, 2oyu, 2p16, 2p3f, 2p3t, 2p3u, 2p93, 2p94, 2p95, 2pe4, 2pr3, 2puq, 2q1j, 2ra0, 2tgf, 3egf, 3pgh, 3pgh, 3pgh, 3tgf, 4cox, 4cox, 4cox, 4cox, 4tgf, 5cox, 5cox, 5cox, 5cox, 6cox

Erik Sonnhammer/Ewan Birney/Alex Bateman http://pfam.xfam.org/

HOME | SEARCH | BROWSE | FTP | HELP

Please help us understand the impact of EMBL-EBI services, including Pfam, by filling out a short survey →

Pfam 33.1 (May 2020, 18259 entries)

The Pfam database is a large collection of protein families, each represented by **multiple sequence alignments** and **hidden Markov models (HMMs)**. **More...**

QUICK LINKS YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS...

SEQUENCE SEARCH Analyze your protein sequence for Pfam matches

VIEW A PFAM ENTRY View Pfam annotation and alignments

VIEW A CLAN See groups of related entries

<u>VIEW A SEQUENCE</u> Look at the domain organisation of a protein sequence

VIEW A STRUCTURE Find the domains on a PDB structure

Sonnhammer et al (1997) Proteins

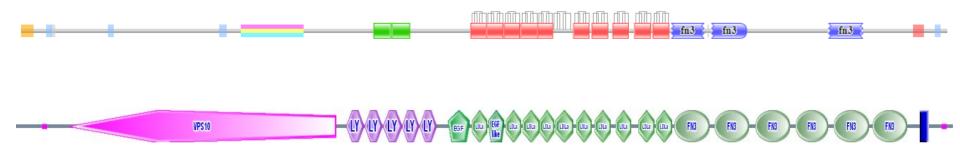
. . .

Mistri et al (2021) Nucleic Acids Research

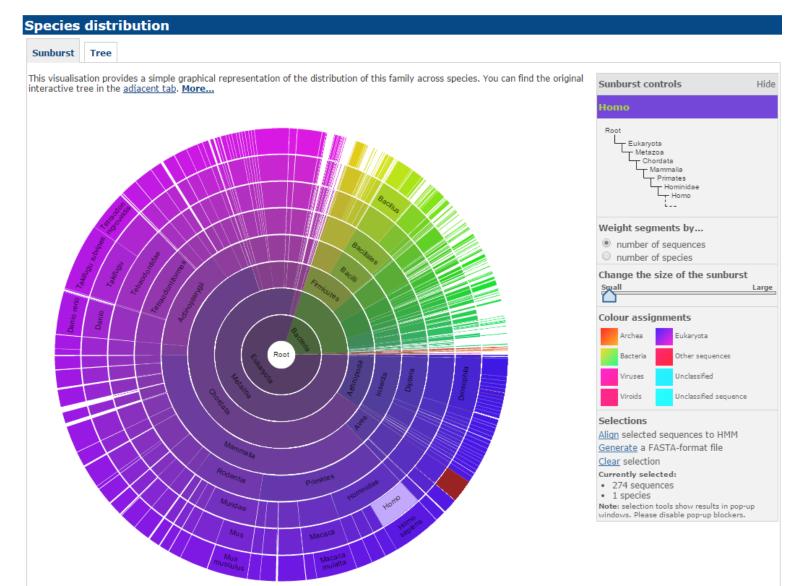
This is the summary of UniProt entry SORL HUMAN 대 (Q92673 대).

Description: Sortilin-related receptor

Source organism: Homo sapiens (Human) (NCBI taxonomy ID 9606)

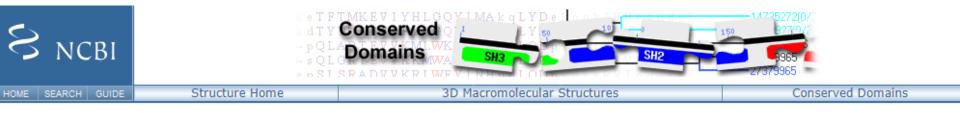

View Pfam proteome data.

Length: 2214 amino acids


Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. This snapshot of UniProt forms the basis of the overview that you see here. It is important to note that, although some UniProt entries may be removed after a Pfam release, these entries will not be removed from Pfam until the next Pfam data release.

Pfam domains

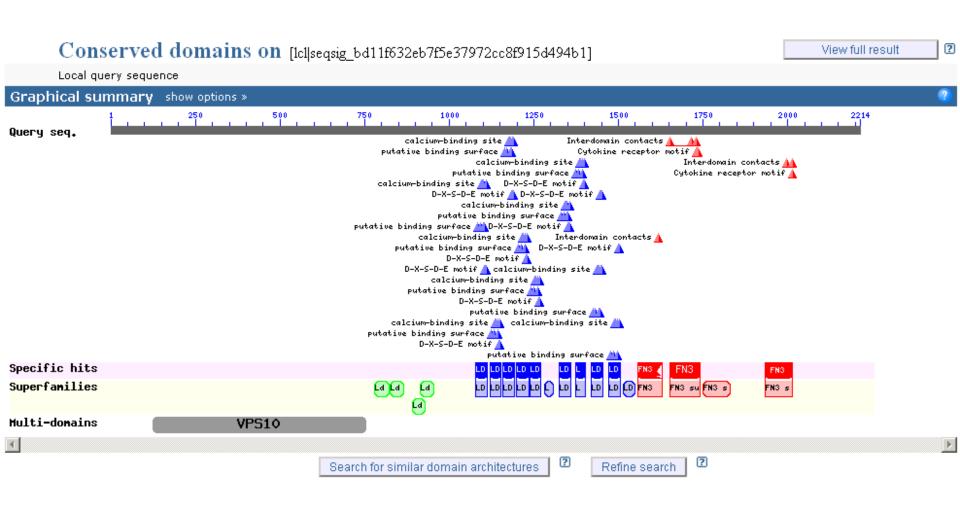
This image shows the arrangement of the Pfam domains that we found on this sequence. Clicking on a domain will take you to the page describing that Pfam entry. The table below gives the domain boundaries for each of the domains. More...



Domain databases CDD

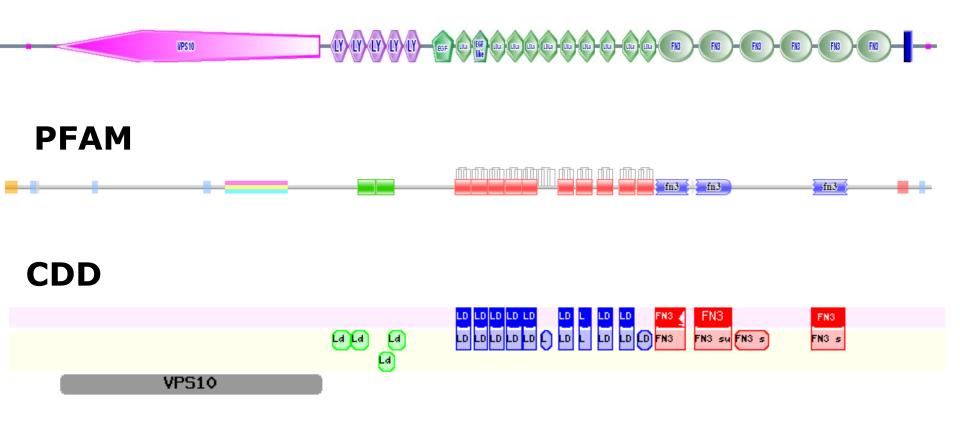
Stephen Bryant

http://www.ncbi.nlm.nih.gov/cdd



Search for Conserved Domains within a protein or coding nucleotide sequence

Lu et al (2020) Nucleic Acids Res

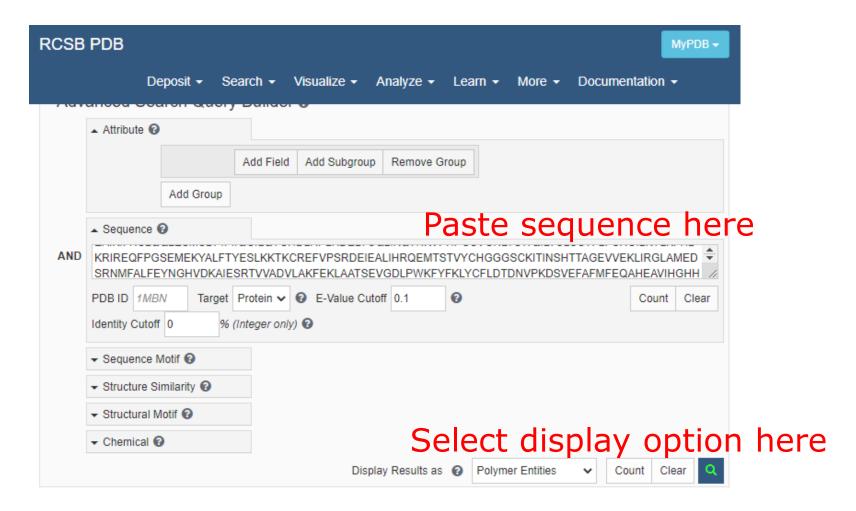

Domain databases CDD

Domain databases

SORLA/SORL1 from Homo sapiens

SMART

Exercise 1 Examine a UniProt Entry and find related PDBs


• Let's see whether human myosin X (UniProt id Q9HD67) or its homologs have a solved structure. Go to PDB Advanced Search page:

Menu > Search > Advanced Search https://www.rcsb.org/search/advanced

- Obtain from UniProt the protein sequence "Q9HD67" and paste it the Sequence window (only sequence no header).
- In "Display Results as" select option "Polymer entities"

Exercise 1

Examine a UniProt Entry and find related PDBs

Exercise 1

Examine a UniProt Entry and find related PDBs

•Considering that your query was a human myosin X, can you interpret the first three hits? Which part of your query was matched? Which protein was hit in the database?

•What about the 4th hit?

Exercise 1

Examine a UniProt Entry and find related PDBs

- •Considering that your query was a human myosin X, can you interpret the first three hits? Which part of your query was matched? Which protein was hit in the database?
- •What about the 4th hit?
- •Can you find a hit to a protein that is not human myosin X? Which part of your query was matched?

Exercise 2Analyse domain predictions with PFAM

- Let's look at the domains predicted for human myosin X. Go to PFAM: http://pfam.xfam.org/
- Select the option VIEW A SEQUENCE
- •Type in the window the UniProt id of the protein sequence "Q9HD67" and hit the Go button.
- •Compare the positions of the domains predicted with the ranges of the BLAST matches in PDB from the previous exercise.

Which domains were matched in the human myosin X by each of those hits?

Exercise 3Examine domains in Chimera

•Open the structure of the 3rd hit (3PZD) in Chimera

Now colour the fragments corresponding to the PFAM domains MyTH4 (in orange), RAS associated (in pink) and FERM_M (in blue).

How do the PFAM annotations fit the structure?

How many more domains can you identify visually?

•Chain B in this structure is a small peptide. Which part of the human myosin X is interacting with this peptide in relation to the domains you have coloured? And what about the glycerol?