

R-Basics tutorial 1

1 Introduction to this tutorial
R is an open source and free statistical programming software including many functions and many
additional packages that can be loaded into it for more specialized analyses.

1.1 Learning Objectives

After successfully completing this tutorial, students will be able to:

1. Use R Studio to write scripts and save results
2. Conduct standard and vector arithmetic calculations
3. Perform basic analyses on data sets
4. Create simple statistical plots

In this tutorial, students should read all pages from page 1, reproduce example R commands, and do the
exercises.

1.2 Installing R and R Studio

You will first install the basic R program and then install "R Studio" which provides a more user-friendly
interface for R. Note that you must install "R" first, then "R Studio. Installation procedure may differ for
personal and university computers.

Install on an institutional computer

If available, use an appropriate app store or contact the IT department if you do not have rights to install
software.

Install on your own computer

Download the software and read installation instructions from the following web sites:

 R on the Comprehensive R Archive Network: http://cran.r-project.org/

 R Studio URL: https://www.rstudio.com/products/rstudio/

http://cran.r-project.org/
https://www.rstudio.com/products/rstudio/

R-Basics tutorial 2

1.3 The R Studio Interface

The image below shows how the R Studio interface might look for an active user. Note that there are
tabs at the top, and there are four sub-windows.

 The upper left window is for creating, running, and saving scripts which consist of a series of
commands that are to be executed in sequence. This window is also used for viewing data sets,
as illustrated in the image below.

 The sub-window at the lower left is the Console, where individual commands are entered and
executed, and the results are shown. When a script is run from the editor, the output will appear
in the Console window.

 The window at the upper right shows available data sets and objects when the "Environment"
tab is selected, and it shows previously run commands when the "History" button is selected.

 The window at the lower right shows files and folders in the user's R folder in the image below,
but this window also is used to display "Help" responses, and for displaying graphs and plots
generated by R.

Click on the "File" tab at the upper left on the screen; you will see a menu that provides options for
creating new files, saving, opening, printing, and quitting, as illustrated below.

R-Basics tutorial 3

Try hovering over each of the other tabs at the top of the interface, just to get an idea of the many
functions that are available.

1.4 Credits

This document is inspired from a similar module originally created by members of the Boston University
(Ching-Ti Liu, Jacqueline Milton, Avery McIntosh, Wayne W. LaMorte).

2 Entering Commands
The command prompt is ">" and can be found at the bottom of the Console window at the lower left.
This is where you can enter commands for immediate execution.

 Commands are separated either by a new line or by a semi colon (;)

 Parentheses and brackets must be closed

 R is case sensitive

 R stores both data and output from data analysis (as well as everything else) in objects

 In the console, use arrow keys to traverse through the history of commands

 "Up arrow" – traverse backwards (older commands)

 "Down arrow" – traverse forward (newer commands)

 Text auto-completion is available using TAB key (e.g. for completing function or object names)

R-Basics tutorial 4

2.1 R as a Calculator

Enter the following examples at the command prompt of the Console to get a feel for this.

In this document, commands are shown in blue, comments in green, and results in black.

2.1.1 Simple operations

8+7

[1] 15

6*4

[1] 24

The notation [1] indicates the first element of the result. This is useful later when we have many
resulting elements.

Commonly Used Operators

Symbol Meaning

+ add

- subtract

* multiply

/ divide

^ power (e.g. 2^3 is equal to 8)

2.1.2 Comments

The # symbol indicates to R that what follows is a comment that should not be executed. You will find it
useful to include comments in your scripts to annotate your programming.

This is a comment that will not be executed.

>

2.1.3 Statistical functions

sqrt(81) # square root

[1] 9

1 + abs(-4) # absolute value

[1] 5

There are other statistical functions such as exp() for exponentiation, log() natural logarithm, or
log10() for base-10 logarithm.

R-Basics tutorial 5

2.1.4 The Order of Operations

Keep in mind the rules for the order of operations: "PEMDAS," meaning Parentheses, Exponents,
Multiplication & Division, then Addition & Subtraction

 Do calculations inside Parentheses first, e.g., 6 × (5 + 3) = 6 × 8 = 48

 Then compute Exponents (Powers, Roots) before multiplication and division: 5 × 22 = 5 × 4 = 20

 Then Multiply or Divide (before you Add or Subtract), e.g., 2 + 5 × 3 = 2 + 15 = 17

 Otherwise just go left to right.

2.1.5 Generating sequences

The colon operator (:) can be used to generate a sequence of integer values. More possibilities are
available with the seq(<start>, <end>, by=<step>) function.

1:3

[1] 1 2 3

-2:1

[1] -2 -1 0 1

seq(1, 9, by = 2) # matches 'end'

[1] 1 3 5 7 9

seq(1, 9, by = pi) # stays below 'end'

[1] 1.000000 4.141593 7.283185

seq(1, 6, by = 3)

[1] 1 4

2.1.6 Exercise

1) Have a look at the following commands. For each command, first think about the result you expect.
Then, run the command and describe your observations. Was your expectation correct? If not, why?

1+2

8/2-2*(2-3)

3*5*4/2

3+5*abs(-2)

2) Calculate the square root of 9

3) Calculate the log10 of the absolute value of -81

4) Create a sequence from 1 to 100 with a separation of 5

R-Basics tutorial 6

2.2 Assignment and variables

When performing calculations, we may want to save the intermediate results for later use. This can be
achieved by assigning objects (values) to symbolic variables using an "assign" function. Once you assign
an object a designation, it stays in the working memory until you close the program. To see what objects
are in the working memory, type ls(), or select Show Workspace command from the drop down menu.

Write the following examples in an R script and run the current/selected line(s) by pressing
CONTROL+ENTER keys or clicking on button named “Run”. Save the script file from time to time.

So to create a variable called x with value of 2, we type

x <- 2

x # If I enter x, R returns 2

[1] 2

[Note that the symbol <- is made up from "less than" and "minus" with NO space between them.]

Although assignment using <- is recommended, one can also use the equals sign:

x=2

The arrow for the assignment symbol always points to the name assigned to the vector.

We can also assign multiple variables the same value and change variable values, as follows:

x <- y <- 3 # Both x and y are assigned values of 3

x # If I enter the updated x, R returns now 3

[1] 3

y # If I enter y, R returns 3 again.

[1] 3

We can manage the workspace with ls() that lists variables and rm() that removes variables from
the computer RAM memory (useful if you have big data and little amount of memory)

ls()

[1] "x" "y"

rm(x)

ls()

[1] "y"

rm(list = ls()) # removes all objects from the workspace

ls()

character(0)

R-Basics tutorial 7

3 Classes and Objects

3.1 Definitions

Some of the main data classes (or types) in R are:

 numeric - e.g. 1, 25.5, 1e-6

 character - e.g. “ABCD”, “Hello World 24!”

 logical - TRUE, FALSE, NA (Not Applicable)

 factor - categorical values

 vector - a set of objects of the same class

 matrix - table of objects of the same class

 data frame - table of objects of same or different classes

R manipulates objects that are instances of classes (e.g. a particular value of a specific type):

 the object of value 1 is an instance of class numeric

 the object of value “ABC“ is an instance of class chr (character)

 the object ls is an instance of class function

3.2 The class() and str() functions

The class() function returns the class of an object

class(1)

[1] "numeric"

The str() function displays the structure of an object

str("ABC")

chr "ABC"

4 Vectors
Vectors are sets of one or more objects of the same class (the atomic mode), e.g., numeric, integer,
logical or character objects. For example, a numeric vector might consist of the numbers (1.2, 2.3, 0.2,
1.1). A vector can also have just a single object.

4.1 Concatenation

Vectors with multiple objects can be created using concatenation with the function c(). The c stands
for concatenation. The objects themselves are placed inside the rounded parentheses, i.e. (), not square
[] or curly { } brackets.

R-Basics tutorial 8

To create a vector named x, consisting of four numbers, namely 1.2, 2.3, 0.2 and 1.1, we can use the
following R command

x <- c(1.2, 2.3, 0.2, 1.1)

x

[1] 1.2 2.3 0.2 1.1

4.2 Selecting Specific Elements of Data

If we want to select only some elements in the vector, then we can use indices. For example, if we want
to know the first, the last, the third and the last three elements in vector x, then we can type

x[1]

[1] 1.2

x[length(x)]

[1] 1.1

x[3]

[1] 0.2

x[c(2,3,4)]

[1] 2.3 0.2 1.1

4.2.1 Exercise

1) Define x as shown below and write a code to get the second element of the vector

x <- c(1.2, 2.3, 0.2, 1.1)

2) What do you see in the screen if we type the following commands?

x[-1]

x[2:4]

3) Based on your observation, what does the negative sign do within the index?

4) Write a code to get together the first and third element

5) Write a code to get all elements but NOT the first and NOT the third elements.

R-Basics tutorial 9

4.3 Logical Vectors and Logical Operators

R allows us to create logical vectors and to manipulate logical quantities as well. To create logical vectors,
you may use TRUE (or T), FALSE (or F), or NA (for missing / not available) directly, or type in the
condition/logic operation. Note that in order to be used in arithmetic calculations, R treats TRUE as 1
and FALSE as 0.

Let's look at some examples to see how these operators work.

1<2

[1] TRUE

! (1<3) # logical NOT (!)

[1] FALSE

1 != 3

[1] TRUE

(3 != 1) & (2 >= 1.9) # logical AND (&): TRUE & TRUE returns TRUE

[1] TRUE

(3 == 1) | (3 < 5) # logical OR (|): TRUE | TRUE returns TRUE

[1] TRUE

y <- c(TRUE, FALSE, 5>2)

y

[1] TRUE FALSE TRUE

4.3.1 Logical operators

Symbol Meaning

== logical equals

!= not equal

! logical NOT

& logical AND

| logical OR

< less than

<= less than or equal to

> greater than

>= greater than or equal to

R-Basics tutorial 10

4.3.2 Logical evaluation

Command Result

TRUE TRUE

FALSE FALSE

! TRUE FALSE

! FALSE TRUE

TRUE & TRUE TRUE

TRUE & FALSE FALSE

FALSE & FALSE FALSE

TRUE | TRUE TRUE

TRUE | FALSE TRUE

FALSE | FALSE FALSE

4.3.3 Exercise

1) If you type the following commands into R, what will (x, y, z, w) be? Make first a guess and then test it.

x <- !(5>=3)

y <- ((2^4) > (2*3))

z<- x|y

w <- x&y

4.4 Vector Arithmetic, subsets and Functions

4.4.1 Vector arithmetic

Let's go back to a vector discussed above.

x <- c(1.2, 2.3, 0.2, 1.1)

This vector consists of four numbers. In some circumstances, we may want to apply certain operations
or calculations to each element in the vector. For example, suppose we wanted to use the vector x to

create a new vector y with elements that are 2 time each x plus 3. One could do this element by
element with the following command:

y <- c(2*x[1]+3, 2*x[2]+3, 2*x[3]+3, 2*x[4]+3)

y

[1] 5.4 7.6 3.4 5.2

R-Basics tutorial 11

but a simpler way to do this is to use the following command:

2 * x + 3

[1] 5.4 7.6 3.4 5.2

4.4.2 Vector subsets

Logical operators can also be used to modify or select subsets of a data set. For example, in the previous
example, we saw that x[c(2,3,4)], x[-1] and x[2:4] work exactly the same and select the last three
elements of the vector x.

You can also use a logical vector to select elements

 x[c(FALSE, TRUE, TRUE, TRUE)]

This instructs R to skip the first element and then select the next three, so it returns the following:

[1] 2.3 0.2 1.1

 If we wanted to select the elements with values greater than 1, we could use the command:

x[x>1]

[1] 1.2 2.3 1.1

 In summary, R can perform functions over entire vectors and can be used to select certain elements
within a vector.

4.4.3 Important Statistical Functions in R

In addition to the elementary arithmetic operations, R can also use vector functions such as those listed
below.

 length(x)

 max(x)

 min(x)

 sum(x)

 mean(x)

 median(x)

 range(x)

 var(x)

 sd(x)

Functions used earlier on single values such as sqrt() or log() can take a vector as input to perform
a calculation for each element.

sqrt(c(4, 9, 16))

[1] 2 3 4

R-Basics tutorial 12

4.4.4 Exercise

R contains a set of small datasets for testing purpose (from package named datasets; loaded by
default). Here, we will use the dataset named “Lengths of Major North American Rivers” that is available
as a vector object called rivers.

1) display the values of rivers and read its documentation using the following commands

rivers

?rivers

2) calculate the number of elements using the appropriate function

3) calculate the mean and standard deviation

4) create a boxplot of the vector values using function boxplot()

5) create a vector named rivers.subset containing the 50 first values

R-Basics tutorial 13

6) create a histogram of values in the subset using function hist()

7) what would you do to better visualize in the histogram the possible values?

8) Try the following solution. For what is the parameter breaks used?

hist(rivers, breaks=20)

9) create a boxplot of the values greater than 500

10) plot a histogram of the 25 first values

11) optional: create a barplot of 25 values that are greater than 500 (use barplot())

Each time you create a new plot in R it replaces the previous content in the window (at the
lower right in R Studio). However, you can review the previously created plots by using the arrow tab
beneath the "Files" tab in the plot window. Note that you can also export the file and save it as an image
file or as a PDF file, or you can copy the image to the clipboard and then paste it into another application,
such as PowerPoint or Word.

R-Basics tutorial 14

5 Data Frames
The vectors that have been discussed previously in this module were one-dimensional, i.e., they
consisted of a simple series of elements that you could imagine being organized in a single row or in a
single column. Data frame objects present the information as table. In practical term, data frame may be
seen as a collection of vectors of the same length, each vector being a column of the table.

5.1 Data Frame Indexing and creation

5.1.1 Data Frame Indexing

The data frame object cars is provided by the dataset “Speed and Stopping Distances of Cars”. It has
50 rows and 2 columns named “speed” and “dist”.

?cars

head(cars) # the 6 first rows (as data frame)

 speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

We can retrieve values at particular rows and columns:

cars[1,2] # cell at row 1 and column 2

[1] 2

cars[5,2] # cell at row 5 and column 2

[1] 16

We can retrieve a full row (as data frame) or column (as vector)

cars[,2] # the second column

 [1] 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 …

[20] 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 …

[39] 32 48 52 56 64 66 54 70 92 93 120 85

cars[4,] # the fourth row

 speed dist

4 7 22

R-Basics tutorial 15

Rows and columns can be indexed by name

colnames(cars)

[1] "speed" "dist"

cars$speed

 [1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 …

[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 …

cars$speed[1:5]

[1] 4 4 7 7 8

cars[1:5, "speed"]

[1] 4 4 7 7 8

rownames(cars)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" …

[28] "28" "29" "30" "31" "32" "33" "34" "35" "36" "37" "38" "39"…

cars["3", "speed"]

[1] 7

5.1.2 Data Frame Creation

A data frame can be created from several vectors. We will use 2 vectors from the state dataset:

state.name (names of 50 USA states) and state.area (area of 50 USA states).

head(state.name)

[1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"

[6] "Colorado"

head(state.area)

[1] 51609 589757 113909 53104 158693 104247

state.combined <- data.frame(state.name, state.area)

head(state.combined)

 state.name state.area

1 Alabama 51609

2 Alaska 589757

3 Arizona 113909

…

R-Basics tutorial 16

Colunm and row names can be changed if not satisfactory or added if missing.

colnames(state.combined) <- c("state", "area")

rownames(state.combined)[1] <- "state_1"

head(state.combined)

 state area

state_1 Alabama 51609

2 Alaska 589757

3 Arizona 113909

4 Arkansas 53104

5 California 158693

6 Colorado 104247

In order to change the 50 row names, we will use the function paste(object1, object2,

object3, …) that converts the input objects as character vector. For example, paste("ABC", 12)
will return "ABC 12" and paste("ABC", 1:2) will return a character vector of 2 elements: "ABC 1"
and "ABC 2". Parameter sep allow to change the default white space separator.

rownames(state.combined) <- paste("state_", 1:50, sep="")

head(state.combined)

 state area

state_1 Alabama 51609

state_2 Alaska 589757

state_3 Arizona 113909

state_4 Arkansas 53104

…

5.1.3 Data Frame import and export

Data Frames can also be created from Excel or CSV files. The simplest way is to use the "Import Data set"
button from the Environment tab in R Studio.

Although not detailed here, the fllowing R commands may be used:

 read.table(), read.delim(), read.csv()

The write.csv() function can be used to export a table (write it into a file on the hard drive)

write.csv(state.combined, file="combined.csv")

The working directory, where files are read and written by default, can be viewed using

getwd() function and changed using setwd("path to directory").

R-Basics tutorial 17

5.2 Exploring and Manipulating a Data Frame

5.2.1 Exploring the Variables

We will use dataset esoph below: Data from a case-control study of (o)esophageal cancer in Ille-et-
Vilaine, France.

Read the documentation to understand the data format

?esoph

Get the data frame dimensions as numbers of rows and columns, and display the 6 first rows:

nrow(esoph)# number of rows

[1] 88

ncol(esoph) # number of columns

[1] 5

dim(esoph) # number of rows and columns in a vector

[1] 88 5

dim(esoph)[1] # number of rows from the vector

[1] 88

dim(esoph)[2] # number of columns from the vector

[1] 5

head(esoph) # display first 6 rows

 agegp alcgp tobgp ncases ncontrols

1 25-34 0-39g/day 0-9g/day 0 40

2 25-34 0-39g/day 10-19 0 10

3 25-34 0-39g/day 20-29 0 6

4 25-34 0-39g/day 30+ 0 5

5 25-34 40-79 0-9g/day 0 27

6 25-34 40-79 10-19 0 7

R-Basics tutorial 18

Compute descriptive statistics for each column:

summary(esoph)

 agegp alcgp tobgp ncases ncontrols

 25-34:15 0-39g/day:23 0-9g/day:24 Min. : 0.000 Min. : 1.00

 35-44:15 40-79 :23 10-19 :24 1st Qu.: 0.000 1st Qu.: 3.00

 45-54:16 80-119 :21 20-29 :20 Median : 1.000 Median : 6.00

 55-64:16 120+ :21 30+ :20 Mean : 2.273 Mean :11.08

 65-74:15 3rd Qu.: 4.000 3rd Qu.:14.00

 75+ :11 Max. :17.000 Max. :60.00

Print the structure of the data frame, including column types

str(esoph)

'data.frame': 88 obs. of 5 variables:

 $ agegp : Ord.factor w/ 6 levels "25-34"<"35-44"<..: 1 1 1 1 1 ...

 $ alcgp : Ord.factor w/ 4 levels "0-39g/day"<"40-79"<..: 1 1 1 ...

 $ tobgp : Ord.factor w/ 4 levels "0-9g/day"<"10-19"<..: 1 2 3 ...

 $ ncases : num 0 0 0 0 0 0 0 0 0 0 ...

 $ ncontrols: num 40 10 6 5 27 7 4 7 2 1 ...

class(esoph$agegp) # objects may have several classes

[1] "ordered" "factor"

Show a boxplot for each column with custom main title:

boxplot(esoph, main="Boxplot for all columns")

Note that factor variables have been plotted using arbitrarily given indices!

R-Basics tutorial 19

Show a histogram of values in column ncases with custom x axis label:

hist(esoph$ncases, xlab="Number of cases")

5.2.2 Exercise

1) Create a boxplot only for the numerical columns (the 2 last columns)

2) Create a simple plot only for the numerical columns and set axis labels using parameters xlab and
ylab

3) Create a vector named ntotal with the sum of the cases and controls

4) Create a new data frame named esoph2 composed by the data frame esoph with additional

column ntotal

5) Create a vector called case.percentages containing percentage of cases (compared to total) and
plot the vector in a barplot (use function barplot())

6) Create a new column called label directly in the data frame esoph2, this column containing a text
composed by number of cases and age group as the following examples: “1 x 25-34” or “3 x 35-44” (use
function paste())

R-Basics tutorial 20

6 Analyzing Data by Subsets

6.1 The table() Function

To compute proportions in different categorical variables, the table() or prop.table() functions
can be used. For the preceding example, we can generate a contingency table of age and alcohol groups:

table(esoph$agegp, esoph$alcgp)

 0-39g/day 40-79 80-119 120+

 25-34 4 4 3 4

 35-44 4 4 4 3

 45-54 4 4 4 4

 55-64 4 4 4 4

 65-74 4 3 4 4

 75+ 3 4 2 2

prop.table(table(esoph$agegp, esoph$alcgp))

 0-39g/day 40-79 80-119 120+

 25-34 0.04545455 0.04545455 0.03409091 0.04545455

 35-44 0.04545455 0.04545455 0.04545455 0.03409091

 45-54 0.04545455 0.04545455 0.04545455 0.04545455

 55-64 0.04545455 0.04545455 0.04545455 0.04545455

 65-74 0.04545455 0.03409091 0.04545455 0.04545455

 75+ 0.03409091 0.04545455 0.02272727 0.02272727

In this case, we can appreciate the unbalanced experimental design for old persons and high tobacco
consumption (n < 4).

6.2 The tapply() function

The tapply() function is useful for executing functions on subsets of a data frame, including numeric
variables. It enables you to subset the data by one or more classifying factors and then performing some
function by subset (e.g., computing the mean and standard deviation of a given variable). The basic
structure of the tapply function is:

tapply(<VAR>,<BY.VAR>,<FUN>)

where <VAR> is the variable that you want to analyze, <BY.VAR> is the variable that you want to

subset by, and <FUN> is the function or computation that you want to apply to <VAR>.

For the esoph dataset, the average number of cases per age groups is calculated as follows:

tapply(esoph$ncases, esoph$agegp, mean)

 25-34 35-44 45-54 55-64 65-74 75+

0.06666667 0.60000000 2.87500000 4.75000000 3.66666667 1.18181818

R-Basics tutorial 21

Or, the maximum number of controls per alcohol groups:

tapply(esoph$ncontrols, esoph$alcgp, max)

0-39g/day 40-79 80-119 120+

 60 40 18 10

Or, the maximum number of cases per age groups and alcohol groups:

tapply expects a list object for several classifying factors

groups.list <- list(esoph$agegp, esoph$alcgp)

tapply(esoph$ncases, groups.list, max)

 0-39g/day 40-79 80-119 120+

25-34 0 0 0 1

35-44 1 3 0 2

45-54 1 6 6 4

55-64 4 9 9 6

65-74 5 17 6 3

75+ 2 2 1 2

6.3 Logical vectors

Vectors of logical values can be used to index other vectors and thus data frames. They can be used to
subset a data frame and apply a function.

Let’s index age group 25-34 in variable mask, and make a boxplot of column “ncontrols” for this group:

mask <- esoph$agegp == "25-34"

mask # logical vector identifying age group 25-34

 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[13] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[85] FALSE FALSE FALSE FALSE

R-Basics tutorial 22

We will use this vector of logical values to select rows in the data frame. Each logical value of the vector

corresponds to a row (first logical value to first row, second logical value to second row, …). Only rows

associated with TRUE values will be selected.

esoph[mask ,] # print rows selected by TRUE values in mask vector

 agegp alcgp tobgp ncases ncontrols

1 25-34 0-39g/day 0-9g/day 0 40

2 25-34 0-39g/day 10-19 0 10

3 25-34 0-39g/day 20-29 0 6

4 25-34 0-39g/day 30+ 0 5

5 25-34 40-79 0-9g/day 0 27

6 25-34 40-79 10-19 0 7

7 25-34 40-79 20-29 0 4

8 25-34 40-79 30+ 0 7

9 25-34 80-119 0-9g/day 0 2

10 25-34 80-119 10-19 0 1

11 25-34 80-119 30+ 0 2

12 25-34 120+ 0-9g/day 0 1

13 25-34 120+ 10-19 1 1

14 25-34 120+ 20-29 0 1

15 25-34 120+ 30+ 0 2

boxplot(esoph[mask, "ncontrols"]) # ncontrols for selected rows

The same in 1 line but for 2 columns:

boxplot(esoph[esoph$agegp == "25-34", c("ncases","ncontrols")])

6.3.1 Exercise

We want to analyze the airquality data set: Daily air quality measurements in New York, May to
September 1973.

1) For each month, print the average ozone measurement

2) For each month, print the maximum temperature

3) Display rows with Ozone not equal to NA using the is.na() function and the logical NOT

4) Display rows with Wind < 5

5) Display rows with Wind < 5 and Ozone not equal to NA

6) Create a new data frame called summer from measurements done in the first 15 days of a summer
month (June to September; keep only the 4 first columns) and prints the number of rows

7) Show distributions of the first 4 columns of the summer data frame in a boxplot

R-Basics tutorial 23

7 Merging tables
We have seen above how to create a bigger table from smaller ones (including vectors) using the

data.frame() function. Columns of the smaller tables must have the same number of rows and they
are simply put next to each other in a new table.

If two tables must be merged but the order of their rows does not fit, we can check if values in one
column from a table can be compared to one column of the other table (check if a common key exist) in
order to align the rows. The common key may be any column or the row names.

Let’s use as example below the state.x77 and USArrests datasets that contain statistics on crimes
in 50 USA states.

The state.x77 is an object of class matrix with 50 rows and 8 columns giving statistics such as murder
rate per 100,000 population (1976). For this demonstration, we will create a new data frame

my.state using all the rows but only 3 columns from state.x77 matrix.

my.state <- data.frame(state.x77[, c("Population", "Area", "Murder")])

head(my.state)

 Population Area Murder

Alabama 3615 50708 15.1

Alaska 365 566432 11.3

Arizona 2212 113417 7.8

Arkansas 2110 51945 10.1

California 21198 156361 10.3

Colorado 2541 103766 6.8

The USArrests is a data frame with 50 rows on 4 columns about crimes and population in 1973 such
as Murder arrests per 100,000 population. For this demonstration, we will use it to create a new data
frame my.USArrests with different rows order based on UrbanPop column.

my.USArrests <- USArrests[order(USArrests$UrbanPop),]

head(my.USArrests)

 Murder Assault UrbanPop Rape

Vermont 2.2 48 32 11.2

West Virginia 5.7 81 39 9.3

Mississippi 16.1 259 44 17.1

North Dakota 0.8 45 44 7.3

North Carolina 13.0 337 45 16.1

South Dakota 3.8 86 45 12.8

R-Basics tutorial 24

We want now to compare the Murder columns from my.state and my.USArrests data frames
that do not have rows aligned.

my.US <- merge(my.state, my.USArrests, by="row.names")

head(my.US)

 Row.names Population Area Murder.x Murder.y Assault UrbanPop Rape

1 Alabama 3615 50708 15.1 13.2 236 58 21.2

2 Alaska 365 566432 11.3 10.0 263 48 44.5

3 Arizona 2212 113417 7.8 8.1 294 80 31.0

4 Arkansas 2110 51945 10.1 8.8 190 50 19.5

5 California 21198 156361 10.3 9.0 276 91 40.6

6 Colorado 2541 103766 6.8 7.9 204 78 38.7

The merge() function expects to process a table x and a table y, as provided in its arguments (here,
my.state and my. USArrests, respectively). Columns having identical names such as Murder are suffixed
with x or y to keep track of their origin.

We can create a scatter plot to observe the variations. Points on the straight line (intercept 0, slope 1)
indicate no changes between 1973 and 1976.

plot(my.US$Murder.x, my.US$Murder.y, main="Murders in US states", xlab="1976", ylab="1973")

abline(0,1)

R-Basics tutorial 25

8 Advanced statistical functions
R includes functions for statistical tests and other advanced statistics. Many functions are already
available in the R Stats package (accessible without additional installation). Other packages can provide
additional functions. Below are presented a few common examples.

8.1 Correlation coefficients

For this example, we use the airquality dataset

> head(airquality) # NA values are present!

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

Scatter plots can show potential correlations between pairs of columns

pairs(airquality[,1:4])

R-Basics tutorial 26

We observe that Ozone and Temp are positively correlated but it is difficult to decide for Solar.R and
Wind. We can use the cor() function to get correlation coefficients

correlation between solar radiations (Solar.R) and average wind speed (Wind)

cor(airquality$Solar.R, airquality$Wind)

[1] NA

Problem! We have to skip calculations involving NAs

cor(airquality$Solar.R, airquality$Wind, use="complete.obs")

[1] -0.05679167

Ozone and Temp should be positively correlated

cor(airquality$Ozone, airquality$Temp, use="complete.obs")

[1] 0.6983603

8.2 Student’s t-test

Student’s t-test is “A two-sample location test of the null hypothesis such that the means of two
populations are equal” (Wikipedia). Note that this test is not suitable for all types of data and examples
below do not cover this potential issue.

Is the mean temperature significantly different in June or August?

> temp.june <- airquality$Temp[airquality$Month==6]

> temp.august <- airquality$Temp[airquality$Month==8]

> t.test(temp.june, temp.august)

 Welch Two Sample t-test

data: temp.june and temp.august

t = -2.8833, df = 58.926, p-value = 0.005486

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -8.246059 -1.489425

sample estimates:

mean of x mean of y

 79.10000 83.96774

The p-value being very small (<5%), we reject the null hypothesis that the mean temperatures are equal.

R-Basics tutorial 27

Is the mean temperature significantly different in July or August?

> temp.july <- airquality$Temp[airquality$Month==7]

> t.test(temp.july, temp.august)

 Welch Two Sample t-test

data: temp.july and temp.august

t = -0.045624, df = 51.755, p-value = 0.9638

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -2.902417 2.773385

sample estimates:

mean of x mean of y

 83.90323 83.96774

The p-value not being very small (>5%), we can not reject the null hypothesis that the mean
temperatures are equal.

R-Basics tutorial 28

9 Annexes

9.1 Installing Additional Packages

Many packages offering additional capabilities are freely available from the The Comprehensive R
Archive Network (CRAN, https://cran.r-project.org/). However, many of these have to be installed
manually after you have installed the basic R program.

For example, you may want to install the package tidyverse extending data analysis functions in R:

From R Studio

 Click on Tools menu and then Install Packages option

 Provide or search package name and click install

 If a CRAN mirror is asked, pick the closest to your physical location

If you are not administrator of the computer, R will install the package only for your user in the home
directory (exact location depending on operating system).

Once you install the package, you still need to load it into R before use as follows:

library(tidyverse)

Then, the package is ready for you to use.

 From the console

Use the following model to install a package from the console:

install.packages("packagename")

Installing packages may required a substantial amount of time, especially when installation of several
packages is requested such as in the example below.

install.packages(c("tidyverse ", "ggvis"))

