Master Biomedizin 2016

MSA

a. Using the protein "Q90WY9", find its orthologs in the following organisms: human (*Homo sapiens*), mouse (*Mus musculus*), chicken (*Gallus gallus*), zebrafish (*Danio rerio*), purple sea urchin (*Strongylocentrotus purpuratus*) and honey bee (*Apis mellifera*). Choose reviewed entries whenever possible. Save the sequences in a fasta file.

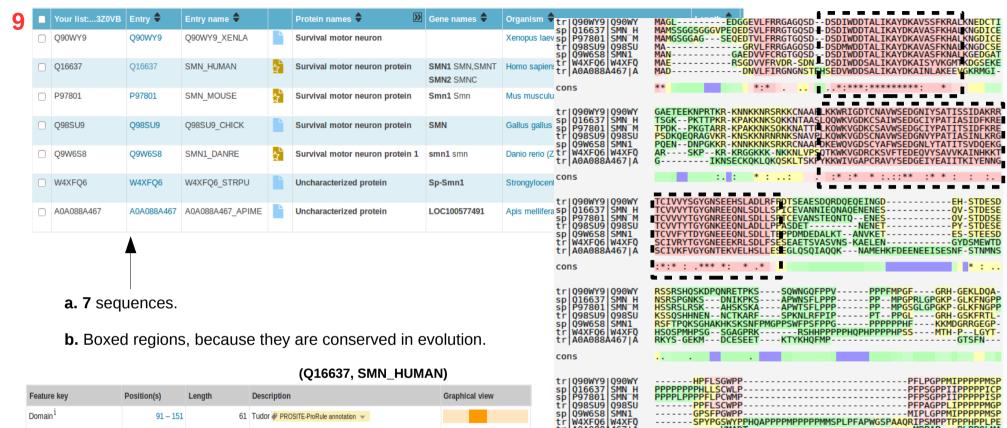
b. Which regions of the previous sequences are important for their function? Why? Use T-Coffee.

Human (Homo sapiens)

Mouse (Mus musculus)

Chicken (rooster) (Gallus gallus)

Zebrafish (Danio rerio)



Sea urchin (Strongylocentrotus purpuratus)

Honey bee (Apis mellifera)

Region				
Feature key	Position(s)	Length	Description	Graphical view
Region ⁱ	13 – 44	32	P1 (binding site for GEMIN2)	
Region ⁱ	97 – 209	113	Required for interaction with RPP20/POP7	
Region ^İ	240 – 267	28	P2 (binding site for SNRPB)	
Region ¹	279 – 294	16	Required for interaction with SYNCRIP	

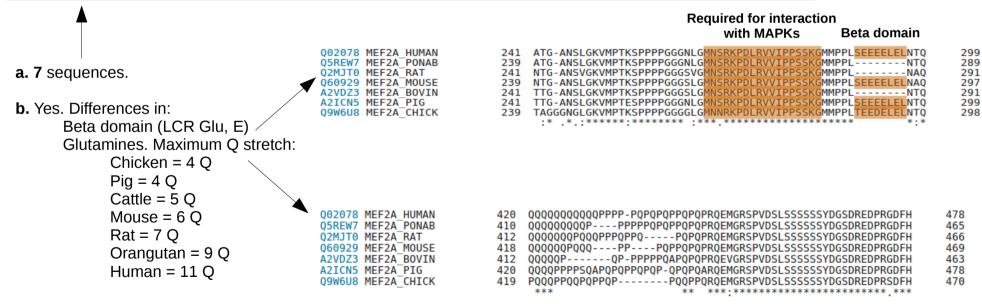
- **a.** Using the human protein "Q02078", find its orthologs in the following organisms: orangutan (*Pongo abelii*), rat (*Rattus norvegicus*), mouse (*Mus musculus*), cattle (*Bos taurus*), pig (*Sus scrofa*) and chicken (*Gallus gallus*). Save the sequences in a fasta file.
- **b.** Do you think the evolution is pressuring these sequences? Have they evolved? If yes, how? Did they gain or lose any domain/motif/region?

Orangutan (Pongo abelii)

Mouse (Mus musculus)

Rat (Rattus norvegicus)

Cattle (Bos taurus)


Pig (Sus scrofa)

Chicken (rooster) (Gallus gallus)

Your list:F86JW	Entry 🔷	Entry name ♦		Protein names ♦	Gene names ♦	Organism 💠	Length ♦
Q02078	Q02078	MEF2A_HUMAN	ģ	Myocyte-specific enhancer factor 2A	MEF2A MEF2	Homo sapiens (Human)	507
Q5REW7	Q5REW7	MEF2A_PONAB	≱ `	Myocyte-specific enhancer factor 2A	MEF2A	Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)	494
Q2MJT0	Q2MJT0	MEF2A_RAT	ş	Myocyte-specific enhancer factor 2A	Mef2a	Rattus norvegicus (Rat)	495
Q60929	Q60929	MEF2A_MOUSE	≱	Myocyte-specific enhancer factor 2A	Mef2a	Mus musculus (Mouse)	498
A2VDZ3	A2VDZ3	MEF2A_BOVIN	≵	Myocyte-specific enhancer factor 2A	MEF2A	Bos taurus (Bovine)	492
A2ICN5	A2ICN5	MEF2A_PIG	☆	Myocyte-specific enhancer factor 2A	MEF2A	Sus scrofa (Pig)	507
Q9W6U8	Q9W6U8	MEF2A_CHICK	χÌ	Myocyte-specific enhancer factor 2A	MEF2A	Gallus gallus (Chicken)	499

a. Both "P17861" (XBP1_HUMAN) and "Q3SZZ2" (XBP1_BOVIN) are "X-box binding protein 1" proteins. Can you detect which region/s of these proteins is/are important for their function? Why? Use Clustal Omega. What should you do to detect them?

b. Add the proteins "G5EE07" (G5EE07_CAEEL) and "Q8UVQ5" (Q8UVQ5_DANRE) to the study in 12a. Are you able to identify that region/s now? Why? Use Clustal Omega.

Human (Homo sapiens)

Cattle (Bos taurus)

Worm (Caenorhabditis elegans)

Zebrafish (Danio rerio)


```
sp|P17861|XBP1 HUMAN
                      MVVVAAAPNPADGTPKVLLLSG0PASAAGAPAG0ALPLMVPA0RGASPEAASGGLP0ARK
sp|Q3SZZ2|XBP1_B0VIN
                      MVVVAPAOSPAAGAPKVLLLSGOPAATGGAPAGRALPVMVPGOOGASPEGASGVPPOARK
                      sp|P17861|XBP1 HUMAN
                      RQRLTHLSPEEKALRRKLKNRVAAQTARDRKKARMSELEQQVVDLEEENQKLLLENQLLR 120
sp|Q3SZZ2|XBP1_BOVIN
                      RQRLTHLSPEEKALRRKLKNRVAAQTARDRKKARMSELEQQVVDLEEENQKLLLENQLLR
sp|P17861|XBP1 HUMAN
                      EKTHGLVVENOELRORLGMDALVAEEEAEAKGNEVRPVAGSAESAALRLRAPL00V0A0L
sp|Q3SZZ2|XBP1_BOVIN
                      EKTHGLVVENOELRORLGMDALVTEEEAETKGNGAGLVAGSAESAALRLRAPL00V0A0L
                      ******************
sp|P17861|XBP1_HUMAN
                      SPLQNISPWILAVLTLQIQSLISCWAFWTTWTQSCSSNALPQSLPAWRSSQRSTQKDPVP
                      SPLQNISPWTLMALTLQTLSLTSCWAFCSTWTQSCSSDVLPQSLPAWSSSQKWTQKDPVP
sp|Q3SZZ2|XBP1_BOVIN
                      ******* * **** ** ***** ****** ****** ***
sp|P17861|XBP1 HUMAN
                      YOPPEL COWGRHOPSWKPLMN 261
```

YRPPLLHPWGRHQPSWKPLMN 261 *:**:* *********** **a.** No. They are too similar. We would need a protein from a more distant organism.

b. Yes. They are not as similar. bZIP (basic-leucine zipper) domain in positions:

70-133 (human)

sp|Q3SZZ2|XBP1 BOVIN

70-133 (cattle)

61-117 (worm)

69-132 (zebrafish)

tr	G5EE07	G5EE07	CAEEL
tr	Q8UVQ5	Q8UVQ5	DANRE
sp	P17861	XBP1 H	JMAN
	Q3SZZ2		

tr|G5EE07|G5EE07 CAEEL

tr|Q8UVQ5|Q8UVQ5 DANRE

sp|P17861|XBP1 HUMAN

sp|Q3SZZ2|XBP1_BOVIN

tr|G5EE07|G5EE07_CAEEL tr|Q8UVQ5|Q8UVQ5_DANRE sp|P17861|XBP1_HUMAN sp|Q3SZZ2|XBP1_BOVIN

tr|G5EE07|G5EE07_CAEEL tr|Q8UVQ5|Q8UVQ5_DANRE sp|P17861|XBP1_HUMAN sp|Q3SZZ2|XBP1_BOVIN

tr|G5EE07|G5EE07_CAEEL tr|Q8UVQ5|Q8UVQ5_DANRE sp|P17861|XBP1_HUMAN sp|Q3SZZ2|XBP1_B0VIN -----MSNYPKRIYVLPARHVAAPQPQRMAPKRALP---TEQVVAQLLGDDMGPS
MVVVT---AGTGGAHKVL-LISGKQSASTGAAQGGYSRSISVMIPNQASSDSDSTTSG-P

MVVVAAAPNPADGTPKVL - LLSGQPASAAGAPAG - - - QALPLMVPAQRGASPEAASGGLP

MVVVAPA0SPAAGAPKVL - LLSGOPAATGGAPAG - - - RALPVMVPG00GASPEGASGVPP

* : :: .: ::

RLLRDKTSDLLSENEELRORLGL - DTLETKEOVOVLE - - - - - SAVSDLG - - LVTGSSE

QLLREKTHGLVVENQELRQRLGM--DALVAEEEAE-----AKGNEVR--PVAGSAE

QLLREKTHGLVVENQELRQRLGM--DALVTEEEAE-----TKGNGAG--LVAGSAE

. ** : . *: :: * : : : * .:: *

Domair	i 70 – 133	64 bZIP / PROSIT	TE-ProRule annotation 🔻	P17861 (human)
Domair	i 70 – 133	64 bZIP / PROSITI	TE-ProRule annotation ▼	Q3SZZ2 (cattle)
Domain ⁱ	61 – 117	57 BZIP (basic-le	eucine zipper) 🎤 InterPro annotation 🔻	G5EE07 (worm)
Domain ⁱ	69 – 132	64 BZIP (basic-let	eucine zipper) / InterPro annotation 🔻	Q8UVQ5 (zebrafish)

47

55

56

56

107

115

116

116

167

165

163

163

227

221

219

MSA

- **a.** The proteins "P11582" and "P02226" are paralogs, but they differ in length (152 vs 161 amino acids). Is there an extra region in P02226, or the extra amino acids are dispersed along the protein?
- b. How could that have happened in evolution?
- c. How could we check this?

P11582 GLBE_CHITH P02226 GLB7A_CHITH	1	-MKFIILALCVAAASALSGDQIGLVQSTYGKVKGDSVGILYAVFKADPTIQAAFPQFV MKFFAVLALCIVGAIASPLSADQAALVKSTWAQVRNSEVEILAAVFTAYPDIQARFPQFA *:***: ** ** ** ** *******************	57 60
P11582 GLBE_CHITH P02226 GLB7A_CHITH	58 61	GKDLDAIKGGAEFSTHAGRIVGFLGGVIDDLPNIGKHVDALVATHKPRGVTHAQ GKDVASIKDTGAFATHAGRIVGFVSEITALIGNESNAPAVQTLVGQLAASHKARGISQAQ ***::**	111 120
P11582 GLBE_CHITH P02226 GLB7A_CHITH	112 121	FNNFRAAFIAYLKGHVDYTAAVEAAWGATFDAFFGAVFAKM FNEFRAGLVSYVSSNVAWNAAAESAWTAGLDNIFGLLFAAL ***** *** *** **********************	152 161

- a. Extra region in P02226: "ALIGNESN".
- **b.** Deletion in P11582, or insertion in P02226.
- c. Looking for orthologs for each protein, and checking whether they have the region or not.

